精英家教网 > 高中数学 > 题目详情

已知f(x)=log2(1+x)+log2(1-x)
(I)求函数f(x)的定义域;
(II)判断函数f(x)的奇偶性,并加以说明;
(III)求数学公式的值.

(I)由,得,解得-1<x<1.
所以函数f(x)的定义域为{x|-1<x<1}.
(II)函数f(x)的定义域为{x|-1<x<1},
因为f(-x)=log2(1+(-x))+log2(1-(-x))=log2(1-x)+log2(1+x)=f(x),
所以函数f(x)=log2(1+x)+log2(1-x)是偶函数.
(III)因为==
分析:(I)要使函数有意义,须有,解出即得定义域;
(II)利用奇偶函数的定义即可判断;
(III)把代入函数式,根据对数运算法则即可求得;
点评:本题考查函数定义域的求解、奇偶性的判断及函数求值,属中档题,定义是解决奇偶性的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案