精英家教网 > 高中数学 > 题目详情

【题目】众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.给出以下命题:

①在太极图中随机取一点,此点取自黑色阴影部分的概率是

②当时,直线与黑色阴影部分有公共点;

③黑色阴影部分中一点,的最大值为2

其中所有正确结论的序号是( )

A.B.C.①③D.①②

【答案】D

【解析】

黑色阴影部分和白色部分面积相等,①中概率易求,由直线与半圆的位置关系可确定②是否正确,点在半圆上时,才能取最大值,求出这个最大值可判断③.

由对称性知黑色阴影部分和白色部分面积相等,因此在太极图中随机取一点,此点取自黑色阴影部分的概率是,①正确;

黑色阴影区域在y轴右侧部分的边界为一个半圆,其方程为),直线的一般式方程为:,说明直线与半圆相切,②正确;

在半圆)上,设

,由

时,取得最大值为,③错.

正确的有①②

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,为椭圆上一点,且.

1)求椭圆的标准方程;

2)设直线,过点的直线交椭圆于两点,线段的垂直平分线分别交直线、直线两点,当最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为矩形,的中点.

1)求证:平面

2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,.

(1)为递增数列,成等差数列,的值;

(2),是递增数列,是递减数列,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明:

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆 的左右焦点分别作直线 交椭圆于,且.

(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

同步练习册答案