精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x<1}\\{lo{g}_{\frac{1}{2}}x,x≥1}\end{array}\right.$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(  )
A.(-1,0)B.(0,1)C.(-1,+∞)D.(-∞,0)

分析 令y=k,画出函数y=f(x)和y=k的图象,通过图象观察即可得到所求k的范围.

解答 解:画出函数f(x)的图象(红色曲线),
如图所示:
令y=k,由图象可以读出:-1<k<0时,
y=k和y=f(x)的图象有3个交点,
即方程f(x)=k有三个不同的实根,
故选A.

点评 本题考查根的存在性问题,渗透了函数方程的转化思想和数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知:$f(x)=lg\frac{ax+1}{1-x}$,a∈R且a≠-1
(Ⅰ)若函数f(x)为奇函数,求实数a的值;
(Ⅱ)求函数f(x)的定义域;
(Ⅲ)若函数f(x)在[10,+∞)上是单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,A′B′C′D′是边长为1的正方形,又知它是某个四边形按斜二测画法画出的直观图,请画出该四边形的原图形,并求出原图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax+1.
(1)求f(x)在区间[-1,2]的最小值g(a);
(2)求f(x)在区间[-1,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若二进制数100y011和八进制数x03相等,则x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个盒子中装有标号为1,2,3,4的4个球,同时选取两个球,则两个球上的数字为相邻整数的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既在定义域上是增函数且图象又关于原点对称的是(  )
A.y=-$\frac{2}{x}$B.y=lg($\frac{2}{1+x}$-1)C.y=2xD.y=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若两圆C1:(x-a12+(y-b12=r2、C2:(x-a22+(y-b22=r2相离,则曲线系[(x-a12+(y-b12-r2]+λ[(x-a22+(y-b22-r2]=0,当λ=-1时表示的曲线与圆C1、圆C2的位置关系是怎样的?请你给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用分数指数幂的形式表示$\sqrt{-a}$•a为(  )
A.-${a}^{\frac{3}{2}}$B.-$(-a)^{\frac{3}{2}}$C.-$(-a)^{\frac{2}{3}}$D.-${a}^{\frac{3}{2}}$

查看答案和解析>>

同步练习册答案