精英家教网 > 高中数学 > 题目详情
4.一个几何体的三视图,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.1D.2

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱柱切去一个四棱锥所得的组合体,分别计算他们的体积,相减可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥所得的组合体,
棱柱的底面面积为:$\frac{1}{2}$×1×1=$\frac{1}{2}$,高为2,故棱柱的体积为:$\frac{1}{2}$×2=1,
棱锥的底面面积为:1×1=1,高为1,故棱锥的体积为:$\frac{1}{3}$×1×1=$\frac{1}{3}$,
故组合体的体积V=1-$\frac{1}{3}$=$\frac{2}{3}$,
故选:A.

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知α=$\frac{7π}{5}$,则角α的终边位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:3${\;}^{lo{g}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lgx-6+3x的零点x0∈(k,k+1),k∈Z,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的各项均正数,满足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$-2an+1-2an=0,其前n项和为Sn.S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,是否存在最大整数m,使得对任意n∈N*均有T2n>$\frac{m}{15}$成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.6个人带10瓶矿泉水参加春游,每个人至少带一瓶,有多少种不同的带法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线f(x)=x3+x2+x+3在x=-1处的切线恰好与抛物线y2=2px(p>0)相切,求抛物线的方程和抛物线上的切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点,若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(x-1)2-alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单增区间.

查看答案和解析>>

同步练习册答案