精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当中点时,二面角 的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)

【答案】①②④

【解析】

①∵,∴平面,得出上任意一点到平面的距离相等,所以判断命题①;

②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;

③当中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;

④过作平面于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.

①∵,∴平面,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;
在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;

③当中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.

:,所以

设面的法向量为,则,即,令,则

设面的法向量为 ,即

,由图示可知,二面角 是锐二面角,所以二面角的余弦值为,所以不正确;

④过作平面于点,做点关于面对称的点,使得点在平面内,

,所以,当点在点时,在一条直线上,取得最小值.

因为正方体的棱长为2,所以设点的坐标为,所以

所以,又所以

所以,故④正确.
故答案为:①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】月份的二中迎来了国内外的众多宾客,其中很多人喜欢询问团队模式,为了了解询问团队模式是否与性别有关,在月期间,随机抽取了人,得到如下所示的列联表:

关心团队

不关心团队

合计

男性

12

女性

36

合计

80

1)若在这人中,按性别分层抽取一个容量为的样本,男性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为关心团队与性别有关系?

2)若以抽取样本的频率为概率,从月来宾中随机抽取人赠送精美纪念品,记这人中关心团队人数为,求的分布列和数学期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路垂直的两条道路,且的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路的总造价为万元,题中所涉及的长度单位均为百米.

1)求解析式;

2)当为多少时,总造价最低?并求出最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有位学生申请三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.

1)求恰有人申请大学的概率;

2)求被申请大学的个数的概率分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量的随机变量的观测值来说,越小,判断有关系的把握越大;其中真命题的个数为(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏, 从中部选择河北. 湖北,从西部选择宁夏, 从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记. 由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验. 在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

100

50

150

合计

140

60

200

(1)写出选择 5 个国家综合试点地区采用的抽样方法;

(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

(3)以频率作为概率, 某普查小组从该小区随机选择 1 家企事业单位,3 家个体经营户作为普查对象,入户登记顺利的对象数记为, 写出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)已知点是圆上任意一点,过点轴的垂线,垂足为,点满足 记点的轨迹为曲线

)求曲线的方程;

)设,点在曲线上,且直线与直线的斜率之积为,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:

爱情婚姻

咏史怀古

边塞战争

山水田园

交游送别

羁旅思乡

其他

总计

篇数

100

64

55

99

91

73

18

500

含“山”字的篇数

51

48

21

69

48

30

4

271

含“帘”字的篇数

21

2

0

0

7

3

5

38

含“花”字的篇数

60

6

14

17

32

28

3

160

1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;

2)已知检索关键字的选取规则为:

①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;

②若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;

设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.

属于“爱情婚姻”类

不属于“爱情婚姻”类

总计

含“花”字的篇数

不含“花”的篇数

总计

附:,其中.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案