科目:高中数学 来源: 题型:
(13分)已知函数.
(Ⅰ)判断函数在区间上的单调性并加以证明;
(Ⅱ)求函数的值域;
(Ⅲ)如果关于x的方程有三个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川资阳高中高三上学期第二次诊断考试文科数学试卷(解析版) 题型:解答题
已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若函数有两个极值点,(),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(二)理数学卷(解析版) 题型:填空题
设函数,给出下列命题:
(1)有最小值;
(2)当时,的值域为;
(3)当时,在区间上有单调性;
(4)若在区间上单调递增,则实数a的取值范围是.
则其中正确的命题是 .
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一第二次段考数学试卷 题型:解答题
(本小题满分12分)已知二次函数有两个零点为和,且。
(1)求的表达式;
(2)若函数在区间上具有单调性,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com