精英家教网 > 高中数学 > 题目详情
5.证明:设m是任一正整数,则am=$\frac{1}{2}$$+\frac{1}{3}$$+\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{{2}^{m}}$不是整数.

分析 分别在原式两边乘以M,再乘以N(最小公倍数),再根据整数的性质和假设的方式,使得命题得以证明.

解答 证明:当m=1时,a1=$\frac{1}{2}$,显然不是整数,结论成立.
下面证明,当m≥2时,am=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2^m}$也不可能是整数.
设S=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2^m}$,令M=2m,在S两边同时乘以M得:MS=$\frac{M}{2}$+$\frac{M}{3}$+$\frac{M}{4}$+…+1,
等式右边的每一项$\frac{M}{k}$(k=1,2,3,…,2m),要么是整数,要么是一个分母为奇数的不可约分数,
再来考察那些分母为奇数的不可约分数的项.
因为m≥2,故在所有的分母当中(都是奇数)必定存在一个最大的奇素数,
设它为p,这样在分母中去掉p,设余下的奇数的最小公倍数为N,
在MS=$\frac{M}{2}$+$\frac{M}{3}$+$\frac{M}{4}$+…+1两边再同时乘以N,得到MNS=$\frac{MN}{2}$+$\frac{MN}{3}$+$\frac{MN}{4}$+…+N.
等式右边的每一项$\frac{MN}{k}$(k=1,2,3,…,…,2m),仅当k=p时,$\frac{MN}{k}$不是整数,其他的项都是整数.
所以等式右边最后得到的不是整数,因此,等式左边的MNS也不是整数,
显然,若S是整数,那么就与MNS不是整数相矛盾!
所以am不可能是整数.证毕.

点评 本题主要考查了整数的性质,涉及到整除,素数,最小公倍数等知识点,通过多次构造使得命题得以证明,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示;
(1)分别写出终边落在0A,0B位置上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a>0且a≠1下列计算中正确的是(  )
A.a2×${a}^{\frac{1}{2}}$=aB.a2÷${a}^{\frac{1}{2}}$=aC.${(a}^{2})^{\frac{1}{2}}$=aD.a2×a-2=a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x∈R,y∈R,i为虚数单位,且[(x-2)i+y](1-i)=2008-1004i,($\frac{1+i}{1-i}$)x+y的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=x2+2x(x≥0)的反函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在棱长为1的正四面体ABCD中,M,N分别是BC和AD的中点,则线段MN的长是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设y1=40.9,y2=log${\;}_{\frac{1}{2}}$4.3,y3=($\frac{1}{3}$)1.5,则(  )
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,下列几种说法不正确的是(  )
A.A1C1⊥BDB.D1C1∥AB
C.二面角A1-BC-D的平面角为45°D.AC1与平面ABCD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设命题p:?x∈R,x2-4x+2m≥0(其中m为常数)则“m≥1”是“命题p为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案