【题目】如图,在多面体中,四边形是菱形,,四边形是直角梯形,,,.
(Ⅰ)证明:平面.
(Ⅱ)若平面平面,为的中点,求平面与平面所成锐二面角的余弦值.
【答案】(I)见解析;(II)
【解析】
(Ⅰ)取的中点,连接,,结合已知条件,得四边形为平行四边形,进而得为平行四边形,由线面平行的判定定理得CE∥平面ADF.
(Ⅱ)取CD中点N,以A为原点,AN为x轴,AB为y轴,AF为z轴,建立空间直角坐标系,利用向量法能求出平面ACH与平面ABEF所成锐二面角的余弦值.
(Ⅰ)取的中点,连接,,如图所示,因为,四边形是直角梯形,
得且,所以四边形为平行四边形,即且.
又因为四边形是菱形,所以,进而,得为平行四边形,
即有,又平面,平面,所以平面.
(Ⅱ)取的中点,在菱形中,,可得.因为平面平面,
平面平面,平面,,所以平面.
以为坐标原点,AN为x轴,AB为y轴,AF为z轴,建立空间直角坐标系,如图所示.
故,,,,,,.
设平面的一个法向量为,则有即
令可得.
易知平面的一个法向量为.
设平面与平面所成的锐二面角为,则,
即所求二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.
(Ⅰ)求该考场考生中语文成绩为一等奖的人数;
(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;
(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”;
(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据(x1,y1),(x2,y2),……,(xn,yn),其回归直线的斜率和截距的最小二乘估计分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的数阵中每一行从左到右均是首项为1,项数为n的等差数列,设第行的等差数列中的第k项为2,3,,,公差为,若,,且,,,,也成等差数列.
Ⅰ求;
Ⅱ求关于m的表达式;
Ⅲ若数阵中第i行所有数之和,第j列所有数之和为,是否存在i,j满足,使得成立?若存在,请求出i,j的一组值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一项是,第二项是1,接着两项为,,接着下一项是2,接着三项是,,,接着下一项是3,依此类推.记该数列的前项和为,则满足的最小的正整数的值为( )
A.65B.67C.75D.77
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在微信群中发了一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,离心率等于,它的一个长轴端点恰好是抛物线的焦点.
(1)求椭圆的标准方程;
(2)已知、()是椭圆上的两点,是椭圆上位于直线两侧的动点,且直线的斜率为.
①求四边形APBQ的面积的最大值;
②求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2014·长春模拟)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com