精英家教网 > 高中数学 > 题目详情
某厂生产某种商品x(百件)的总成本函数为C(x)=
1
3
x3-6x2
+29x+15(万元),利润R(x)=20x-x2(万元)则生产这种商品所获利润的最大值为多少?此时生产了多少商品(百件)?
考点:函数最值的应用
专题:应用题,函数的性质及应用
分析:根据利润R(x)=20x-x2(万元),利用配方法,即可得出结论.
解答: 解:由题意,利润R(x)=20x-x2=-(x-10)2+100,
所以x=10百件时,所获利润的最大值为100万元.
点评:本题考查利用数学知识解决实际问题,考查配方法,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若变量x,y满足线性约束条件
x-y+1≥0
2x+y-a≥0
x≤2
,且3x+y的最小值为1,则a=(  )
A、0B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC边上的高BD所在直线方程为2x+y-3=0,∠CAB的角平分线所在直线方程为y=1,若点C坐标为(3,3).
(Ⅰ)求直线AC的方程和点A的坐标;
(Ⅱ)求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞),当a=-
1
2
时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题中,错误的是(  )
A、从匀速快递的产品生产流水线上,质检员每15分钟从中抽取一样产品进行某项指标检测,这样的抽样是系统抽样
B、对分类变量X与Y的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大
C、两个随机变量相关越强,则相关系数的绝对值越接近于0
D、在回归直线方程y=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命-和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了8次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
8081937288758384
8293708477877885
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
3
)cos(ωx-
π
6
)-
1
2
(0<ω<1)的图象关于直线x=
π
3
对称
(1)求ω的值;
(2)若f(α)=
1
6
,α∈(-
3
π
3
)
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD边长为2,H为AD的中点,在正方形内随机取一点,则|PH|<
2
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
2
(x2-2ax+3).
(1)若函数f(x)的定义域为R,值域为(-∞,-1],求实数a的值;
(2)若函数f(x)在(-∞,1]上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案