精英家教网 > 高中数学 > 题目详情
7.直线$\sqrt{3}$x+y-1=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 设直线$\sqrt{3}$x+y-1=0的倾斜角为θ.由直线$\sqrt{3}$x+y-1=0化为y=-$\sqrt{3}$x+1,可得tanθ=-$\sqrt{3}$,即可得出.

解答 解:设直线$\sqrt{3}$x+y-1=0的倾斜角为θ.
由直线$\sqrt{3}$x+y-1=0化为y=-$\sqrt{3}$x+1,
∴tanθ=-$\sqrt{3}$,
∵θ∈[0,π),∴θ=$\frac{2π}{3}$.
故选:C.

点评 本题考查了直线的斜率与倾斜角的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若复数z=$\frac{a-i}{1-i}$(a∈R,i是虚数单位)是纯虚数,则复数3-z的共轭复数是(  )
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,与函数y=x表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}$B.$f(x)=\root{5}{x^5}$C.$f(x)={(\sqrt{x})^2}$D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|1≤x<4},B={x|2a≤x<3-a}.若A∪B=A,则实数a的取值范围$a≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(-1,0),F(1,0),动点P满足$\overrightarrow{AP}$•$\overrightarrow{AF}$=2|$\overrightarrow{FP}$|.
(1)求动点P的轨迹C的方程;
(2)直线l过F交曲线C于A、B两点,若线段AB的长为6,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin(-765°)的值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列,且${a_3}=\frac{1}{8},{a_2}=4{a_7}$
(1)求{an}的通项公式
(2)若${b_n}={a_n}{a_{n+1}}({n∈{N^+}})$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列命题:
①若给定命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,均有x2+x-1≥0;
②若p∧q为假命题,则p,q均为假命题;
③命题“若x2-3x+2=0,则x=2”的否命题为“若 x2-3x+2=0,则x≠2,
其中正确的命题序号是(  )
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知0<α<$\frac{π}{2}$,sinα=$\frac{1}{3}$,则cosα=$\frac{2\sqrt{2}}{3}$;cos2α=$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案