精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,公差d>0,前n项和为Sn,a2•a3=45,a1+a5=18.
(1)求数列的{an}通项公式;
(2)令bn=(n∈N*),是否存在一个非零数C,使数列{Bn}也为等差数列?若存在,求出c的值;若不存在,请说明理由.
【答案】分析:(1)根据等差数列的通项公式以及已知条件求出首项和公差,即可求出结果.
(2)代入等差数列的前n和公式可求sn,进一步可得bn,然后结合bn+1-bn=2(n+1)-2n=2,从而可求c
解答:解:(1)由题设,知{an}是等差数列,且公差d>0
则由解得
所以an=4n-3
(2)由bn===
因为c≠0,故c=-,得到bn=2n
因为bn+1-bn=2(n+1)-2n=2,符合等差数列的定义
所以数列{bn}是公差为2的等差数列.
点评:本题给出等差数列满足的条件,求数列{an}的通项公式,并依此讨论数列{bn}能否成等差的问题.着重考查了等差数列的通项公式、求和公式和方程组的解法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案