精英家教网 > 高中数学 > 题目详情
10.已知函数 f(x)的定义域为 A,若当f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则称 f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数.给出下列命题:
①函数f(x)=x2(x∈R)是单值函数;
②函数f(x)=2x(x∈R)是单值函数;③若f(x)为单值函数,x1,x2∈A,且x1≠x2,则f(x1)≠f(x2);
④函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是单值函数.
其中的真命题是②③.(写出所有真命题的编号)

分析 由新定义可知,满足题意的函数实际上是单调函数.
由二次函数f(x)=x2(x∈R)的单调性判断①;由指数函数的单调性判断②;结合单调函数的性质判断③,由分段函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$的单调性判断④.

解答 解:由f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则f(x)实际上是单调函数.
①函数f(x)=x2(x∈R)在(-∞,0)上单调递减,(0,+∞)上单调递增,故不是单值函数;
②函数f(x)=2x(x∈R)是单调函数,故f(x)=2x(x∈R)是单值函数;
③f(x)为单值函数,则f(x)是单调函数,若x1≠x2,则f(x1)≠f(x2);
④函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是分段函数,在(-∞,0)上单调递减,(0,+∞)上单调递增,故不是单值函数.
故答案为:②③.

点评 本题是新定义题,考查命题的真假判断与应用,考查了基本初等函数的单调性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{6}$,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设椭圆$\frac{x^2}{3}+\frac{y^2}{2}$=1右焦点为F2,点P是圆x2+y2-6x+8=0上的动点,则PF2的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)在R上的导函数是f′(x),并且满足xf′(x)<0,若a=f(0.33),b=f(log2$\sqrt{3}$),c=f(log3$\sqrt{2}$),则(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[-1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$;g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$;设函数F(x)=[f(x+3)]•[g(x-4)],且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正方体ABCD-A1B1C1D1,过A1点可作    条直线与直线AC和BC1都成60°角(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等式$\sqrt{\frac{x}{x-2}}=\frac{\sqrt{x}}{\sqrt{x-2}}$成立的条件是(  )
A.x≠2B.x>0C.x>2D.0<x<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\left\{\begin{array}{l}{ln\frac{1}{x},x>0}\\{\frac{1}{x},x<0}\end{array}\right.$,则f(f(e))=-1;不等式f(x)>-1的解集为(-∞,-1)∪(0,e).

查看答案和解析>>

同步练习册答案