点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“δ点”,那么下列结论中正确的是
直线l上的所有点都是“δ点”
直线l上仅有有限个点是“δ点”
直线l上的所有点都不是“δ点”
直线l上有无穷多个点(不是所有的点)是“δ点”
科目:高中数学 来源:2009年高考数学理科(北京卷) 题型:013
点
P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=AB,则称点P为“点”,那么下列结论中正确的是直线
l上的所有点都是“点”直线
l上仅有有限个点是“点”直线
l上的所有点都不是“点”直线
l上有无穷多个点(点不是所有的点)是“点”查看答案和解析>>
科目:高中数学 来源:安徽省淮南市二中2012届高三第三次月考数学理科试题 题型:044
(1)如图,D是Rt△ABC的斜边AB上的中点,E和F分别在边AC和BC上,且ED⊥FD,求证:EF2=AE2+BF2(EF2表示线段EF长度的平方)(尝试用向量法证明)
(2)已知函数f(x)=x3-3x图像上一点P(1,-2),过点P作直线l与y=f(x)图像相切,但切点异于点P,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年湖北武汉市高三2月调研测试理科数学试卷(解析版) 题型:解答题
如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ,=λ,其中0<λ<1.
(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省、金陵中学、南京外国语学校高三三校联考数学卷 题型:解答题
A.选修4-1:几何证明选讲
|
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.
B.选修4-2:矩阵与变换
(本小题满分10分)
已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.
C.选修4-4:坐标系与参数方程
(本小题满分10分)
求曲线C1:被直线l:y=x-所截得的线段长.
D.选修4-5:不等式选讲
(本小题满分10分)
已知a、b、c是正实数,求证:≥.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com