【题目】某果园基地培育出一种特色水果,要在某一季节内采摘一批这种水果销往A市,每售出1吨这种水果获利800元,未售出的水果每吨亏损400元,根据去年市场调研数据统计,该季节A市对这种水果的市场需求量t(单位:吨,100≤t≤150)的频率分布直方图如图所示.现该果园计划采摘140吨这种水果运往A市,经销这种水果的利润Q(单位:元)
(1)求Q关t的函数表达式;
(2)视频率为概率,求利润Q的分布列及数学期望.(每组数据以区间的中点值为代表).
【答案】(1)(2)见解析
【解析】
(1)分成两段计算:当需求量不小于吨时,全部卖出.当需求量小于吨时,用获利的减去亏损的计算出利润的表达式.(2)取每个小长方形的中点作为代表,利用(1)的表达式求得相应的利润,同时计算出每个小长方形的面积得到频率,也即概率,由此得到分布列,并计算出数学期望.
解:(1)当时,
当时,
∴
(2)由题意得的取值可以有105、115、125、135及145.
利润为:,概率为0.1;
,概率为0.2;,概率为0.3;
,概率为0.25; ,概率为0.15.
∴利润分布列为
Q | 70000 | 82000 | 94000 | 106000 | 112000 |
P | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
∴
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为边长为2的菱形,,,面面,点为棱的中点.
(1)在棱上是否存在一点,使得面,并说明理由;
(2)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA=2,M,N分别为OA,BC的中点.
(1)求证:直线MN平面OCD;
(2)求点B到平面DMN的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,为其焦点,抛物线的准线交轴于点T,直线l交抛物线于A,B两点。
(1)若O为坐标原点,直线l过抛物线焦点,且,求△AOB的面积;
(2)当直线l与坐标轴不垂直时,若点B关于x轴的对称点在直线AT上,证明直线l过定点,并求出该定点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,,E,F分别为AB,CD的中点,,M为DF中点.现将四边形BEFC沿EF折起,使平面平面AEFD,得到如图所示的多面体.在图中,
(1)证明:;
(2)求二面角E-BC-M的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,都是各项为正数的数列,且,.对任意的正整数n,都有,,成等差数列,,,成等比数列.
(1)求数列和的通项公式;
(2)若存在p>0,使得集合M=恰有一个元素,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com