【题目】给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴椭圆”,若椭圆右焦点坐标为,且过点.
(1)求椭圆的“伴椭圆”方程;
(2)在椭圆的“伴椭圆”上取一点,过该点作椭圆的两条切线、,证明:两线垂直;
(3)在双曲线上找一点作椭圆的两条切线,分别交于切点、使得,求满足条件的所有点的坐标.
【答案】(1);(2)证明见解析;(3)或或或.
【解析】
(1) 利用和联立解方程可得;
(2) 设切线方程为:,代入椭圆的方程,利用判别式等于0,可得关于斜率的一元二次方程,利用韦达定理可得斜率之积为,从而可证两条切线垂直;
(3) 设经过点与椭圆相切的直线为:,代入椭圆的方程,利用判别式为0, 可得关于斜率的一元二次方程,然后根据斜率之积为可得点的轨迹方程为,最后联立此方程与双曲线方程可解得的坐标即可.
(1)依题意可得,,所以,①
又椭圆过点,所以 ②
由①②可得,
椭圆的“伴椭圆”方程为:.
(2)由(1)可得椭圆,
设切线方程为:,将其代入椭圆,消去并整理得:
,
由,
得,
设,的斜率为,则,
所以两条切线垂直.
(3)当两条切线的斜率存在时,设经过点与椭圆相切的直线为:,
则
消去并整理得,,
所以,
经过化简得到:,
设两条切线的斜率分别为,
则,
因为,所以,所以,
所以,
所以,
当两条切线的斜率不存在时,也满足,
所以的轨迹为椭圆的”伴随圆”,其方程为:,
联立,解得,
所以或或或,
所以满足条件的所有点的坐标为: 或或或.
科目:高中数学 来源: 题型:
【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的、.
(1)求岁与岁年龄段“时尚族”的人数;
(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班共有名学生,已知以下信息:
①男生共有人;
②女团员共有人;
③住校的女生共有人;
④不住校的团员共有人;
⑤住校的男团员共有人;
⑥男生中非团员且不住校的共有人;
⑦女生中非团员且不住校的共有人.
根据以上信息,该班住校生共有______人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:
(Ⅰ)求,的值;
(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过两点,且圆心在直线上.
(1)求圆的方程;
(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;
(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若数列中存在,其中,,,,及均为正整数,且(),则称数列为“数列”.
(1)若数列的前项和,求证:是“数列”;
(2)若是首项为1,公比为的等比数列,判断是否是“数列”,说明理由;
(3)若是公差为()的等差数列且(),,求证:数列是“数列”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com