【题目】某村电费收取有以下两种方案供农户选择:
方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取:
方案二:不收取管理费,每度0.58元.
(1)求方案一的收费L(x)(元)与用电量x(度)间的函数关系.若老王家九月份按方案一缴费35元,问老王家该月用电多少度?
(2)老王家该月用电量在什么范围内,选择方案一比选择方案二好?
【答案】(1)L(x),60度电.(2)25<x<50.选择方案一比选择方案二好.
【解析】
(1)易得该函数为分段函数,分与两种情况分段求解,再求的解即可.
(2)令,再分析的解即可.
(1)L(x),
①当0<x≤30时,令0.5x+2=35,解得x=66(舍去).
②当x>30时,令0.6x﹣1=35,解得x=60.∴老王家该月用电60度电.
(2)令g(x)=0.58x﹣L(x),由(1)可得:g(x).
显然g(x)>0为所求.
①当0<x≤30时,令g(x)=0.08x﹣2>0,解得x>25,∴25<x≤30.
②当x>30时,令g(x)=﹣0.02x+1>0,解得x<50.则30<x<50.
综上可得:25<x<50.选择方案一比选择方案二好.
科目:高中数学 来源: 题型:
【题目】甲、乙二人独立破译同一密码,甲破译密码的概率为,乙破译密码的概率为.记事件A:甲破译密码,事件B:乙破译密码.
(1)求甲、乙二人都破译密码的概率;
(2)求恰有一人破译密码的概率;
(3)小明同学解答“求密码被破译的概率”的过程如下:
解:“密码被破译”也就是“甲、乙二人中至少有一人破译密码”所以随机事件“密码被破译”可以表示为所以
请指出小明同学错误的原因?并给出正确解答过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
× | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 | |
× | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
据上表中的数据,应用统计软件得下表2:
均值(单位:秒)方差 | 方差 | 线性回归方程 | |
甲 | 85 | 50.2 | |
乙 | 84 | 54 |
(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;
(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年,“非典”爆发,以钟南山为代表的医护工作者经长期努力,抗击了非典.年岁高龄的钟院士再次披挂上阵,逆行武汉抗击新冠疫情。为调查中学生对这一伟大“逆行者”的了解程度,某调查小组随机抽取了某市物化生、政史地的名高中生,请他们列举钟南山院士在医学上的成就,把能列举钟南山成就不少于项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:
组合 | 0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 |
物化生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
政史地(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)请将下面的2×2列联表补充完整;
组合 | 比较了解 | 不太了解 | 合计 |
物化生 | |||
政史地 | |||
合计 |
(2)判断是否有99%的把握认为,了解钟南山与选择物化生、政史地组合有关?
参考:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若,求的最大值;
(2)如果函数在公共定义域D上,满足,那么就称为的“伴随函数”.已知函数,.若在区间上,函数是的“伴随函数”,求实数的取值范围;
(3)若,正实数满足,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知点D是AB上一点,满足=λ,点E是边CB上一点,满足=λ.
①当λ=时,求;
②是否存在非零实数λ,使得⊥?若存在,求出的λ值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com