精英家教网 > 高中数学 > 题目详情

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:

AQI

空气质量

轻度污染

中度污染

重度污染

重度污染

天数

6

14

18

27

25

10

1)从空气质量指数属于[050],(50100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.

i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;

ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.

【答案】1;(2)(i)详见解析;(ii)会超过;详见解析

【解析】

1)利用组合进行计算以及概率表示,可得结果.

2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.

ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.

1)设ξ为选取的3天中空气质量为优的天数,

Pξ2Pξ3

则这3天中空气质量至少有2天为优的概率

2)(i

X的分布列如下:

X

0

220

1480

P

ii)由(i)可得:

EX)=02201480302(元),

故该企业9月的经济损失的数学期望为30EX),

30EX)=9060元,

7月、8月每天因空气质量造成的经济损失为Y元,

可得:

EY)=02201480320(元),

所以该企业7月、8月这两个月因空气质量造成

经济损失总额的数学期望为320×(31+31)=19840(元),

19840+90602890028800

7月、8月、9月这三个月因空气质量造成

经济损失总额的数学期望会超过2.88万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:

根据这9年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.243;

根据后5年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.984.

(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,

方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.

从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?

附:相关性检验的临界值表:

(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照 …… 分成9组,制成了如图所示的频率分布直方图

1)求频率分布直方图中的值;

2)若该市政府看望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.

(1)求椭圆的方程;

(2)若过点且斜率不为0的直线交椭圆两个不同点,证明:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

10

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)若直线的极坐标方程为,设的交点为AB,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面四边形ABCD是菱形, 是边长为2的等边三角形, , .

求证: 底面ABCD

求直线CP与平面BDF所成角的大小;

在线段PB上是否存在一点M,使得平面BDF?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.

(1)求该椭圆的标准方程;

(2)上一点(轴上方),直线分别交椭圆于两点,若,求点的坐标.

查看答案和解析>>

同步练习册答案