精英家教网 > 高中数学 > 题目详情
已知四边形ABCD为直角梯形,∠ADC=90°,AD∥BC,△ABD为等腰直角三角形,平面PAD⊥平面ABCD,E为PA的中点,AD=2BC=2
2
,PA=3PD=3.
(1)求证:BE∥平面PDC;
(2)求证:AB⊥平面PBD.
分析:(1)取PD中点F,连EF、CF,证明四边形BCFE为平行四边形,然后证明BE∥平面PDC;
(2)通过计算说明PD⊥AD,利用平面与平面的垂直,证明PD⊥AB,即可证明AB⊥平面PBD;
解答:解:证明:(1)取PD中点F,连EF、CF,则EF∥AD且EF=
1
2
AD,
由题意四边形BCFE为平行四边形,∴BE∥CF,
∵BE?平面PDC,CF?平面PDC,
∴BE∥平面PDC;          …(4分)
(2)由题意:AD=2BC=2
2
,PA=3PD=3.
∵AD2+PD2=AP2∴PD⊥AD,
又平面PAD⊥平面ABCD,∴PD⊥面ABCD,
∴PD⊥AB,又∴BD⊥AB,
∴AB⊥面PBD;
点评:本题考查直线与平面的平行的判定定理的应用,直线与平面垂直判断定理的应用,考查空间想象能力,逻辑推理能力..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE∥平面BDF;
(2)求三棱锥D-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)已知四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”是“l垂直于两底AB,DC”的
充分不必要
充分不必要
条件(填写“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一个).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

同步练习册答案