精英家教网 > 高中数学 > 题目详情
6.设a=${∫}_{0}^{{e}^{2}-1}$$\frac{1}{x+1}$dx,则二项式(x2-$\frac{a}{x}$)9的展开式中常数项为5376.

分析 利用定积分求出a的值,再利用二项式展开式的通项公式求出常数项即可.

解答 解:a=${∫}_{0}^{{e}^{2}-1}$$\frac{1}{x+1}$dx=ln(x+1)${|}_{0}^{{e}^{2}-1}$=lne2-ln1=2,
∴二项式(x2-$\frac{a}{x}$)9展开式的通项公式为
Tr+1=${C}_{9}^{r}$•(x29-r•${(-\frac{2}{x})}^{r}$=(-2)r•${C}_{9}^{r}$•x18-3r
令18-3r=0,解得r=6;
∴展开式中的常数项为
(-2)6•${C}_{9}^{6}$=64×84=5376.
故答案为:5376.

点评 本题考查了定积分以及二项式展开式的通项公式应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的前n项和Sn=2an-2n+1(n∈N*),则其通项公式an=n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对变量x,y有观测数据(xi,yi)(i=1,2,3,…,8),得散点图如图①所示,对变量u,v有观测数据(ui,vi)(i=1,2,3,…,8),得散点图如图②所示,由这两个散点图可以判断(  )
A.变量x与y正相关;u与v正相关B.变量x与y正相关;u与v负相关
C.变量x与y负相关;u与v正相关D.变量x与y负相关;u与v负相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{4}{3}$a.
(1)求$\frac{b}{a}$;
(2)若c2=a2+$\frac{1}{4}$b2,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-lnx,a∈R.
(1)当a=1时,求函数f(x)在点 (1,f(1))处的切线方程;
(2)是否存在实数a,使f(x)的最小值为$\frac{3}{2}$,若存在,求出a的值;若不存在,请说明理由;
(3)当x∈(0,+∞)时,求证:e2x3-2x>2(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线x2-$\frac{{y}^{2}}{4}$=1的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD.
(Ⅰ)证明PF⊥FD;
(Ⅱ)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.i为虚数单位,则在复平面上复数z=-1+3i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案