精英家教网 > 高中数学 > 题目详情
已知在四面体P-ABC中,对棱相互垂直,则点P在平面ABC上的射影为△ABC的(  )
分析:作出P在底面的射影O,利用PA⊥BC,PB⊥AC,PC⊥AB得到AO⊥BC,B0⊥AC,OC⊥AB,从而确定P在平面ABC上的射影为△ABC的垂心.
解答:解:作出P在底面的射影O,连结AO,BO,CO,
∴AO,BO,CO,分别为PA,PB,PC在平面ABC内的射影,
∵PA⊥BC,PB⊥AC,PC⊥AB由三垂线逆定理得:
OA⊥BC,OB⊥AC,OC⊥AB,
∴O为三角形ABC的垂心.
故选C.
精英家教网
点评:本题考查了上三垂线逆定理的应用,考查了棱锥的结构特征,画出图形助解直观,形象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四面体P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
.F是线段PB上一点,CF=
15
17
34
,点E在线段AB上,且EF⊥PB.
(1)证明:PB⊥平面CEF;
(2)求二面角B-CE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,

PB=.F是线段PB上一点,CF=,点E在线段AB上,且EF⊥PB.

(1)证明PB⊥平面CEF;

(2)求二面角BCEF的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体PABC中,已知PA=PB=PC=AB=AC=,BC=,则P-ABC的体积V的取值范围是_____________。

查看答案和解析>>

科目:高中数学 来源:2010年广东省高三上学期期中考试理科数学卷 题型:解答题

(本小题满分14分)

如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F是线段PB上一点,,点E在线段AB上,且EF⊥PB.

   (Ⅰ)证明:PB⊥平面CEF;

   (Ⅱ)求二面角B—CE—F的正弦值

 

查看答案和解析>>

同步练习册答案