精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程为.

(1)求函数的解析式;

(2)若关于的方程恰有两个不同的实根,求实数的值;

(3)数列满足.

证明:①

.

【答案】(1);(2);(3)证明见解析.

【解析】

(1)把x=3代入切线方程,求出切点,把切点坐标代入二次函数得关于a,b方程,再由得另一方程,联立求解a,b的值,则函数解析式可求;

(2)把(1)中求出函数f(x)的解析式代入方程f(x)=k ex,然后转化为k=e﹣x(x2﹣x+1),然后利用导数求函数的极值,根据函数的极值情况,通过画简图得到使方程k=e﹣x(x2﹣x+1),即方程f(x)=k ex恰有两个不同的实根时的实数k的值;

(3)①利用作差法证明即可;(2)得到,分别取n=1,2,…,代入后化简,则的整数部分可求.

(1),依题设,有

解得

.

(2)方程,即,得,

,

.

,得 .

∴当时,取极小值;当时,取极大值.

作出直线和函数的大致图象,可知当时,

它们有两个不同的交点,因此方程恰有两个不同的实根.

(3)①证明,得,又.

,

.

②由,得,

,

即:,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

π

2π

x

0

4

-4

0

1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数fx)的解析式;

2)将图象上所有点向左平行移动θ)个单位长度,得到的图象.图象的一个对称中心为,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t是参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为

(Ⅰ)写出直线l的普通方程、曲线C的参数方程;

(Ⅱ)过曲线C上任意一点A作与直线l的夹角为45°的直线,设该直线与直线l交于点B,求的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解人们对延迟退休年龄政策的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持延迟退休的人数与年龄的统计结果如下:

(I)由频率分布直方图估计年龄的众数和平均数;

(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对延迟退休年龄政策的支持度有差异;

参考数据:

(III)若以45岁为分界点,从不支持延迟退休的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的左、右焦点为右支上的动点(非顶点),的内心.变化时,的轨迹为(

A.直线的一部分B.椭圆的一部分

C.双曲线的一部分D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数与复平面上点对应.

1)若是关于的一元二次方程的一个虚根,且,求实数的值;

2)设复数满足条件(其中、常数),当为奇数时,动点的轨迹为,当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹的方程;

3)在(2)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.

1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;

2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?

3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中x>0,k为常数,e为自然对数的底数.

(1)当k≤0时,求的单调区间;

(2)若函数在区间(1,3)上存在两个极值点,求实数k的取值范围;

(3)证明:对任意给定的实数k,存在(),使得在区间()上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是(  )

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

同步练习册答案