【题目】已知函数在处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足.
证明:①;
②.
【答案】(1);(2)或;(3)证明见解析.
【解析】
(1)把x=3代入切线方程,求出切点,把切点坐标代入二次函数得关于a,b方程,再由得另一方程,联立求解a,b的值,则函数解析式可求;
(2)把(1)中求出函数f(x)的解析式代入方程f(x)=k ex,然后转化为k=e﹣x(x2﹣x+1),然后利用导数求函数的极值,根据函数的极值情况,通过画简图得到使方程k=e﹣x(x2﹣x+1),即方程f(x)=k ex恰有两个不同的实根时的实数k的值;
(3)①利用作差法证明即可;(2)由得到,分别取n=1,2,…,代入后化简,则的整数部分可求.
(1),依题设,有即,
解得,
∴.
(2)方程,即,得,
记,
则.
令,得 .
∴当时,取极小值;当时,取极大值.
作出直线和函数的大致图象,可知当或时,
它们有两个不同的交点,因此方程恰有两个不同的实根.
(3)①证明,得,又.
∴,
∴.
②由,得,
,
即:,
.
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将图象上所有点向左平行移动θ()个单位长度,得到的图象.若图象的一个对称中心为,求θ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t是参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.
(Ⅰ)写出直线l的普通方程、曲线C的参数方程;
(Ⅱ)过曲线C上任意一点A作与直线l的夹角为45°的直线,设该直线与直线l交于点B,求的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(I)由频率分布直方图估计年龄的众数和平均数;
(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
参考数据:
(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左、右焦点为,,为右支上的动点(非顶点),为的内心.当变化时,的轨迹为( )
A.直线的一部分B.椭圆的一部分
C.双曲线的一部分D.无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数与复平面上点对应.
(1)若是关于的一元二次方程的一个虚根,且,求实数的值;
(2)设复数满足条件(其中、常数),当为奇数时,动点的轨迹为,当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹与的方程;
(3)在(2)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.
(1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?
(3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中x>0,k为常数,e为自然对数的底数.
(1)当k≤0时,求的单调区间;
(2)若函数在区间(1,3)上存在两个极值点,求实数k的取值范围;
(3)证明:对任意给定的实数k,存在(),使得在区间(,)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是( )
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com