精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.
分析:(I)由直三棱柱ABC-A1B1C1中,AC⊥BC,可以C为原点,CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设出N点坐标,根据MN⊥平面A1BC,则
MN
BA1
=0,
MN
CA1
=0,构造方程组,若方程组有解,则存在满足条件点N,若方程组无解,则不存在满足条件点N;
(II)分别求出平面A1AB和平面A1BC的法向量,代入向量夹角公式,求出平面A1AB和平面A1BC所成角的余弦值,进而可以求出平面A1AB和平面A1BC所成角的.
解答:精英家教网解:(Ⅰ)根据题意CA、CB、CC1两两互相垂直
如图:以C为原点,CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系
设AC=BC=CC1=a,则A1(a,0,a),M(
a
2
a
2
a
2
)
,B(0,a,0),B1(0,a,a),A(a,0,0),C1(0,0,a),
假设在B1C1上存在一点N,使MN⊥平面A1BC,设N(0,y,a)
所以
BA1
=(a,-a,a),
CA1
=(a,0,a),
MN
=(-
a
2
,y-
a
2
a
2
)

MN
BA1
=0,
MN
CA1
=0,得:y=
a
2

∴N在线段B1C1的中点处(6分)
(Ⅱ)由(Ⅰ)知MN⊥平面A1BC,则平面A1BC的一个法向量为
n
=(1,0,-1)

取AB中点D,连接CD,易证CD⊥平面A1AB
∴可得面A1AB的一个法向量
n1
=(
1
2
1
2
,0)
(8分)
cos?
n
n1
>=
n
n1
|
n
||
n1
|
=
1
2
2
2
2
=
1
2

所以面A1AB和面A1BC所成的角为
π
3
.(12分)
点评:本题考查的知识点是二面角的平面角及求法,直线与平面垂直的判定,其中建立适当的空间坐标系,将空间线线垂直及面面夹角问题转化为向量垂直和向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案