精英家教网 > 高中数学 > 题目详情

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于(  )

A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】延长CA到D,使得AD=AC,则ADA1C1为平行四边形,
∠DA1B就是异面直线BA1与AC1所成的角,
又A1D=A1B=DB=AB,
则三角形A1DB为等边三角形,∴∠DA1B=60°
故选C.
【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数若曲线处的切线方程为.

(Ⅰ)求的值;

(Ⅱ)若对于任意,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过 关者奖励件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.

(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;

(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;

(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(l)求证:

(2)求证:

(3)设,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A﹣BCD中,AB=CD,且直线AB与CD成60°角,点M、N分别是BC、AD的中点,求直线AB和MN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)

已知椭圆 的左焦点为,右焦点为,离心率.的直线交椭圆于两点,且的周长为.

1)求椭圆的方程;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以为直径的圆恒过一定点.并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程是,双曲线的左右焦点分别为的左右顶点,而的左右顶点分别是的左右焦点.

1)求双曲线的方程;

2)若直线与双曲线恒有两个不同的交点,且的两个交点AB满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是[0,1]上的不减函数,即对于0≤x1≤x2≤1有f(x1)≤f(x2),且满足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),则f( )=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为椭圆 的左、右焦点,点在椭圆上,且面积的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点, 的面积为1, ),当点在椭圆上运动时,试问是否为定值?若是定值,求出这个定值;若不是定值,求出的取值范围.

查看答案和解析>>

同步练习册答案