分析 利用两角和的正弦函数公式,余弦函数公式,二倍角公式化简已知等式,可求sin2α,sinβ,进而利用同角三角函数基本关系式可求cosβ的值,利用二倍角的余弦函数公式可求cos2α,利用两角和的余弦函数公式即可计算求值得解.
解答 解:∵cos($α+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cosα-sinα)=$\frac{1}{3}$,可得:cosα-sinα=$\frac{\sqrt{2}}{3}$,①
∴两边平方可得,1-sin2α=$\frac{2}{9}$,解得:sin2α=$\frac{7}{9}$,
∵0$<α<\frac{π}{2}$,可得:cosα+sinα=$\sqrt{(1+sin2α)}$=$\frac{4}{3}$,②
∴由①②解得:cos2α=(cosα-sinα)(cosα+sinα)=$\frac{4\sqrt{2}}{9}$,
又∵sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,可得:$\frac{\sqrt{2}}{2}$(sin$\frac{β}{2}$+cos$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,两边平方,可得:sinβ=$-\frac{1}{3}$,cosβ=$\frac{2\sqrt{2}}{3}$,
∴cos(2α+β)=cos2αcosβ-sin2αsinβ=$\frac{4\sqrt{2}}{9}$×$\frac{2\sqrt{2}}{3}$-$\frac{7}{9}$×(-$\frac{1}{3}$)=$\frac{23}{27}$.
故答案为:$\frac{23}{27}$.
点评 本题主要考查了两角和的正弦函数公式,余弦函数公式,二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {4} | B. | {3} | C. | {1,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,6) | B. | (1,+∞) | C. | (3,6) | D. | [3,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 5 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com