精英家教网 > 高中数学 > 题目详情
(1)已知数列{an}为等比数列,且a5=8,a7=2,该数列的各项都为正数,求an
(2)若等比数列{an}的首项a1=
9
8
,末项an=
1
3
,公比q=
2
3
,求项数n.
分析:(1)设等比数列{an}的公比为q>0,由于a5=8,a7=2,可得q2=
a7
a5
即可得出;
(2)利用等比数列的通项公式即可得出.
解答:解:(1)设等比数列{an}的公比为q>0,
∵a5=8,a7=2,
q2=
a7
a5
=
2
8
=
1
4
,∴q=
1
2

an=a5qn-5=8×(
1
2
)n-5
=28-n
(2)∵an=a1qn-1
1
3
=
9
8
×(
2
3
)n-1
,化为(
2
3
)n-4
=1,
∴n-4=0,解得n=4.
点评:本题考查了等比数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知数列{an}的第1项 a1=1,且an+1=
an
1+an
( n=1,2,3…)使用归纳法归纳出这个数列的通项公式.(不需证明)
(2)用分析法证明:若a>0,则
a2+
1
a2
-
2
≥a+
1
a
-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,求数列{an}的通项公式
(2)已知数列{an}的通项公式为an=n•2n,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知数列{an}的各项均为正数,前n项和为Sn,若Sn=
1
4
(an+1)2
①求{an}的通项公式;
②设m,k,p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(2)若{an}是等差数列,前n项和为Tn,求证:对任意n∈N*,Tn,Tn+1,Tn+2不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知数列{an}中,a1=1,且满足an+1=3an+1,n∈N*,求数列{an}的通项公式
(2)已知数列{an}中,a1=2,an=
an-12an-1+1
(n≥2)
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.
(2)已知
1
a
1
b
1
c
成等差数列,求证
b+c
a
c+a
b
a+b
c
也成等差数列.

查看答案和解析>>

同步练习册答案