精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线极坐标方程为,直线与曲线交于、两点.

1)求直线的普通方程以及曲线的直角坐标方程;

2)若直线上有定点,求的值.

【答案】1)直线:;曲线:;(2.

【解析】

1)将两式相加,消去参数,即可得到本题答案;在方程两边同时乘以,再利用转化为直角坐标方程即可;

2)把直线的参数方程:为参数),代入曲线的直角坐标方程,利用参数的几何意义求解,即可得到本题答案.

1)将两式相加,

可得直线的普通方程为:

由题,得,则

所以的直角坐标方程为:

2)把直线的参数方程:为参数)代入曲线方程化简得:

设对应的参数分别为

因为在曲线内,所以异号,

由韦达定理,得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:

一次购物款(单位:元)

顾客人数

统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.

(Ⅰ)试确定 的值,并估计每日应准备纪念品的数量;

(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.到直线的距离为3”的充要条件

B.直线的倾斜角的取值范围为

C.直线与直线平行,且与圆相切

D.离心率为的双曲线的渐近线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为丰富教职工生活,五一节举办教职工趣味投篮比赛,有两个定点投篮位置,在点投中一球得2分,在点投中一球得3.规则是:每人投篮三次按先的顺序各投篮一次,教师甲在点投中的概率分别是,且在两点投中与否相互独立.

1)若教师甲投篮三次,求教师甲投篮得分的分布列;

2)若教师乙与教师甲在点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:(1是偶函数;(2是偶函数;(3的最小值为;(4有两个零点;其中真命题的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.,则.

B.命题已知,若,则是真命题.

C.上恒成立上恒成立”.

D.函数的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极值点,求的极大值;

2)求实数的范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,大学决定考核只有合格和优秀两个等次,若某志愿者考核合格,授予个学分;考核优秀,授予个学分,假设该大学志愿者甲、乙、丙考核优秀的概率为.他们考核所得的等次相互独立.

1)求在这次考核中,志愿者甲、乙、丙三人中至少一名考核为优秀的概率;

2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列.

查看答案和解析>>

同步练习册答案