分析 (Ⅰ)利用函数的图象,直接求解分段函数的解析式.
(Ⅱ)利用分段函数,列出不等式组,求解即可.
解答 解:(Ⅰ)由题意可知:A(-1,0),B(0,2),C(2,0).
f(x)$\left\{\begin{array}{l}2x+2,-1≤x<0\\-x+2,0≤x≤2\end{array}\right.$;
(Ⅱ)不等式f(x)≥x2.
即:$\left\{\begin{array}{l}2x+2≥{x}^{2}\\-1≤x<0\end{array}\right.$或$\left\{\begin{array}{l}0≤x≤2\\-x+2≥{x}^{2}\end{array}\right.$,
解得1-$\sqrt{3}≤x<0$或0≤x≤1.
不等式的解集为:{x|1-$\sqrt{3}≤x≤1$}.
点评 本题考查分段函数的应用,函数的解析式的求法,不等式组的解法,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 函数的单调递减区间为(-∞,1),(1,+∞) | B. | 函数的单调递减区间为(-∞,1]∪(1,+∞) | ||
C. | 函数的单调递增区间为(-∞,1),(1,+∞) | D. | 函数的单调递增区间为(-∞,1]∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\sqrt{{x}^{2}}$ | B. | y=$\root{3}{|x{|}^{3}}$ | ||
C. | y=lnex | D. | y=a${\;}^{lo{g}_{a}x}$(a>0且a≠1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com