如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②③求点G的横坐标的取值范围.
(Ⅰ) 以A点为坐标原点,l1为x轴,建立如图所示的坐标系,则D(1,0),B(4,0),动点M的轨迹方程为.
(Ⅱ点G的横坐标的取值范围为(0,).
(Ⅰ) 以A点为坐标原点,l1为x轴,建立如图所示的坐标系,则D(1,0),B(4,0),设M(x,y),
则N(x,0).
∵|BN|=2|DM|, ∴|4-x|=2,
整理得3x2+4y2=12, ∴动点M的轨迹方程为.
(Ⅱ)∵
∴A、D、G三点共线,即点G在x轴上;又∵∴H点为线段EF的中点;又∵∴点G是线段EF的垂直平分线GH与x轴的交点。
设l:y=k(x-1)(k≠0),代入3x2+4y2=12得
(3+4k2)x2-8k2x+4k2-12=0,由于l过点D(1,0)是椭圆的焦点,
∴l与椭圆必有两个交点,
设E(x1,y1),F(x2,y2),EF的中点H的坐标为(x0,y0),
∴x1+x2=,x1x2= ,
x0= = ,y0=k(x0-1)= ,
∴线段EF的垂直平分线为
y- y0 =- (x-x0),令y=0得,
点G的横坐标xG = ky0+x0 = + =
= -,
∵k≠0,∴k2>0,∴3+4k2>3,0<<,∴-<-<0,
∴xG= -(0,)
∴点G的横坐标的取值范围为(0,).
科目:高中数学 来源: 题型:
17 |
查看答案和解析>>
科目:高中数学 来源: 题型:
17 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.w.w.w.k.s.5.u.c.o.m
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②③求点G的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com