精英家教网 > 高中数学 > 题目详情

如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.

(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①求点G的横坐标的取值范围.

(Ⅰ) 以A点为坐标原点,l1为x轴,建立如图所示的坐标系,则D(1,0),B(4,0),动点M的轨迹方程为.

(Ⅱ点G的横坐标的取值范围为(0,).


解析:

(Ⅰ) 以A点为坐标原点,l1为x轴,建立如图所示的坐标系,则D(1,0),B(4,0),设M(x,y),

则N(x,0).   

∵|BN|=2|DM|,    ∴|4-x|=2,

整理得3x2+4y2=12,    ∴动点M的轨迹方程为.

(Ⅱ)∵

∴A、D、G三点共线,即点G在x轴上;又∵∴H点为线段EF的中点;又∵∴点G是线段EF的垂直平分线GH与x轴的交点。        

设l:y=k(x-1)(k≠0),代入3x2+4y2=12得

(3+4k2)x2-8k2x+4k2-12=0,由于l过点D(1,0)是椭圆的焦点,

∴l与椭圆必有两个交点,

设E(x1,y1),F(x2,y2),EF的中点H的坐标为(x0,y0),

∴x1+x2=,x1x2=  ,      

x0= = ,y0=k(x0-1)= ,   

∴线段EF的垂直平分线为

y- y0 =-  (x-x0),令y=0得,

点G的横坐标xG = ky0+x0 = + =

=

∵k≠0,∴k2>0,∴3+4k2>3,0<<,∴-<-<0,

∴xG= (0,

∴点G的横坐标的取值范围为(0,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1和l2相交于点M且l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲线段C是哪类圆锥曲线的一部分?并建立适当的坐标系,求曲线段C所在的圆锥曲线的标准方程;
(2)在(1)所建的坐标系下,已知点P(m,n)在曲线段C上,直线l:mx+ny=1,求直线l被圆x2+y2=1截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l1,l2,l3是同一平面内三条不重合自上而下的平行直线.
(Ⅰ)如果l1与l2间的距离是1,l2与l3间的距离是1,可以把一个正三角形ABC的三顶点分别放在l1,l2,l3上,求这个正三角形ABC的边长;
(Ⅱ)如图,如果l1与l2间的距离是1,l2与l3间的距离是2,能否把一个正三角形ABC的三顶点分别放在l1,l2,l3上,如果能放,求BC和l3夹角的正切值并求该正三角形边长;如果不能,说明为什么?
(Ⅲ)如果边长为2的正三角形ABC的三顶点分别在l1,l2,l3上,设l1与l2的距离为d1,l2与l3的距离为d2,求d1•d2的范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.w.w.w.k.s.5.u.c.o.m

(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.

(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①求点G的横坐标的取值范围.

查看答案和解析>>

同步练习册答案