精英家教网 > 高中数学 > 题目详情
如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
点.

(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
(1)先证AG⊥平面CBG  (2)

试题分析:(1)证.正方形ABCD,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF
∵AG,GB面ABEF, ∴CB⊥AG,CB⊥BG.又AD=2a,AF= a, ABEF是矩形,G是EF的中点.
∴AG=BG=,AB=2a, AB2=AG2+BG2, ∴AG⊥BG,∵BC∩BG=B,∴AG⊥平面CBG,而AG面AGC,故平
面AGC⊥平面BGC.  
(2)解.如图,由(1)知面AGC⊥面BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,
∴∠BGH是GB与平面AGC所成的角.

∴在R t△CBG中
又BG=,∴ 
点评:本题考查面面垂直的判定方法,以及求线面成的角的求法,体现转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知三棱锥的底面是直角三角形,且平面是线段的中点,如图所示.

(Ⅰ)证明:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有以下四个命题:  其中真命题的序号是                      (  )
①若,则;②若,则
③若,则;   ④若,则
①②     ③④     ①④        ②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设、是两条不同的直线,是一个平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面α⊥平面βAαBβAB与平面α所成的角为,过AB分别作两平面交线的垂线,垂足为A′、B′,若,则AB与平面β所成的角的正弦值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,下列命题成立的是(    )
A.若,则
B.若,则
C.若, 则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

同步练习册答案