精英家教网 > 高中数学 > 题目详情
14.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,则曲线$\frac{{x}^{2}}{sinθ}-\frac{{y}^{2}}{cosθ}$=1是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

分析 把sinθ+cosθ=$\frac{1}{5}$两边平方可得,sinθ•cosθ<0,可判断θ为钝角,sinθ>-cosθ,从而判断方程所表示的曲线.

解答 解:因为θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,所以θ∈($\frac{π}{2}$,π),
且|sinθ|>|cosθ|,从而sinθ>-cosθ,
从而曲线$\frac{{x}^{2}}{sinθ}-\frac{{y}^{2}}{cosθ}$=1是焦点在x轴上的椭圆.
故选:A.

点评 本题考查圆锥曲线的共同特征,由三角函数式判断角的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)记Sn为数列{an}的前n项和,bn=(1-$\frac{{S}_{n}}{{S}_{n+1}}$)$\frac{1}{\sqrt{{S}_{n+1}}}$,求证:b1+b2+…+bn$<\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l的极坐标方程为$ρsin(θ-\frac{π}{3})=6$,圆C的参数方程为$\left\{\begin{array}{l}x=10cosθ\\ y=10sinθ\end{array}\right.(θ$为参数).
(1)请分别把直线l和圆C的方程化为直角坐标方程;
(2)求直线l被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}中,a3=$\frac{7}{6}$,a7=$\frac{15}{14}$,且{$\frac{1}{{a}_{n}-1}$}是等差数列,则a5=(  )
A.$\frac{10}{9}$B.$\frac{11}{10}$C.$\frac{12}{11}$D.$\frac{13}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}-{y}^{2}=1$C.y2-$\frac{{x}^{2}}{3}$=1D.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”
B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
C.命题p;存在x0∈R,使得x02+x0+1<0,则¬p;任意x∈R,使得x2+x+1≥0
D.“am2<bm2”是“a<b”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值为$\frac{7}{4}$,最小值为$\frac{3}{4}$.
(1)求ω、a、b的值;
(2)指出f(x)的单调递增区间;
(3)若函数f(x)满足方程f(x)=a(0.75<a<1.5),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1);数列{bn}满足anbn=log2an,数列{bn}的前n项和Tn
(Ⅰ)求an,Tn
(Ⅱ)若?n∈N+,不等式t2+2λt+3<Tn成立,求使关于t的不等式有解的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知一个等边三角形的三边长为6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,求某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率.

查看答案和解析>>

同步练习册答案