精英家教网 > 高中数学 > 题目详情
设AB为抛物线y2=x上的动弦,且|AB|=2,则弦AB的中点M到y轴的最小距离为(  )
分析:确定抛物线的准线方程,利用抛物线的定义及弦长,可得弦AB的中点到准线的最小距离,进而可求弦AB的中点到y轴的最小距离.
解答:解:由题意,抛物线y2=x的焦点坐标为(
1
4
,0),准线方程为x=-
1
4

根据抛物线的定义,∵|AB|=2,∴A、B到准线的距离和最小为2(当且仅当A,B,F三点共线时取最小)
∴弦AB的中点到准线的距离最小为1
∴弦AB的中点到y轴的最小距离为1-
1
4
=
3
4

故选B.
点评:本题考查抛物线的定义,考查学生的计算能力,正确运用抛物线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设AB为过抛物线y2=8x的焦点的弦,则弦AB的长的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

设AB为过抛物线y2=8x的焦点的弦,若A,B两点的坐标分别为(x1,y1),(x2,y2),m=
(x2-x1)2+(y2-y1)2
,则实数m的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

设AB为过抛物线y2=2px(p>0)的焦点的弦,则|AB|的最小值为(  )
A、
P
2
B、P
C、2P
D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设AB为抛物线y2=2px(p>0,p为常数)的焦点弦,M为AB的中点,若M到y轴的距离等于抛物线的通径长,则|AB|=
 

查看答案和解析>>

同步练习册答案