精英家教网 > 高中数学 > 题目详情
3.定义平面向量之间的一种运算“⊙”如下:对任意的$\overrightarrow a=(m,n),\overrightarrow b=(p,q)$(其中m,n,p,q均为实数),令$\overrightarrow a⊙\overrightarrow b=mq-np$.在下列说法中:
(1)若向量$\overrightarrow a与\overrightarrow b$共线,则$\overrightarrow a⊙\overrightarrow b=0$;
(2)$\overrightarrow a⊙\overrightarrow b=\overrightarrow b⊙\overrightarrow a$;
(3)对任意$λ∈R,有(λ\overrightarrow a)⊙\overrightarrow b=λ(\overrightarrow a⊙\overrightarrow b)$;
(4)${(\overrightarrow a⊙\overrightarrow b)^2}+{(\overrightarrow a•\overrightarrow b)^2}={|{\overrightarrow a}|^2}{|{\overrightarrow b}|^2}$(其中$\overrightarrow a•\overrightarrow b$表示$\overrightarrow a与\overrightarrow b$的数量积,$|{\overrightarrow a}$|表示向量的模).
正确的说法是(1),(3),(4).(写出所有正确的说法的序号)

分析 根据新定义,逐项计算式子的两端,验证是否相等.

解答 解:对于(1),若向量$\overrightarrow a与\overrightarrow b$共线,则mq-np=0,∴$\overrightarrow a⊙\overrightarrow b=0$,故(1)正确;
对于(2),$\overrightarrow{b}$⊙$\overrightarrow{a}$=pn-qm,$\overrightarrow a⊙\overrightarrow b=mq-np$,故(2)不正确;
对于(3),($λ\overrightarrow{a}$)⊙$\overrightarrow{b}$=(λm,λn)⊙(p,q)=λmq-λnp,λ($\overrightarrow{a}$⊙$\overrightarrow{b}$)=λ(mq-np)=λmq-λnp.故(3)正确;
对于(4),($\overrightarrow{a}$⊙$\overrightarrow{b}$)2+($\overrightarrow{a}•\overrightarrow{b}$)2=(mq-np)2+(mp+nq)2=m2q2+n2p2+m2p2+n2q2=(m2+n2)(p2+q2),|$\overrightarrow{a}$|2=m2+n2,|$\overrightarrow{b}$|2=p2+q2,故(4)正确.
故答案为:(1),(3),(4).

点评 本题考查了平面向量的数量积运算和新定义运算,根据新定义计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知命题p:函数f(x)=lg(ax2-6x+a)的定义域为R,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若“p或q”为真,“p且q“为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a=(1,2),\overrightarrow b=(-2,y),若\overrightarrow a∥\overrightarrow b,则|3\overrightarrow a+\overrightarrow b|$等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:3mx+8y+3m-10=0过定点(  )
A.(-1,-$\frac{4}{5}$)B.(-1,$\frac{4}{5}$)C.(-1,$\frac{5}{4}$)D.(-1,-$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.形如$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$的符号叫二阶行列式,现规定$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$=a11•a22-a21•a12,如果f(θ)=$|\begin{array}{l}{sinθ}&{cosθ}\\{cos\frac{2π}{3}}&{sin\frac{7π}{3}}\end{array}|$=$|\begin{array}{l}{\sqrt{2}}&{-2\sqrt{2}}\\{1}&{-\frac{3}{2}}\end{array}|$θ∈(0,π),则θ=$\frac{π}{12}$或$\frac{7π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若数列{an}满足${a_1}•{a_2}•{a_3}•…•{a_n}={n^2}+3n+2$,则an=$\left\{\begin{array}{l}6,n=1\\ \frac{n+2}{n},n≥2,n∈N\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(0,2)且与抛物线y2=mx只有一个公共点的直线共有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方体ABCD-A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则(  )
A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1
C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从自然数1,2,3,4,5中,任意取出两个数组成两位的自然数,则在两位自然数中取出的数恰好能被3整除的概率为(  )
A.$\frac{2}{5}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案