精英家教网 > 高中数学 > 题目详情
9.记关于x的不等式$\frac{x-a}{x+1}$<0的解集为P,不等式|x-1|≤1的解集为Q.
(1)若a=3,求P;
(2)若a>0,且Q⊆P,求a的取值范围.

分析 (1)把a=3代入不等式解集合P;(2)根据Q⊆P,求正数a的取值范围.

解答 解:(1)当a=3时,由$\frac{x-a}{x+1}$<0,得P=(-1,3)…4分
(2)由|x-1|≤1,得:Q={x|0≤x≤2}…6分
由a>0,得P=(-1,a),…8分
又Q⊆P,所以a>2,
即a的取值范围是(2,+∞)…10分

点评 本题主要考查不等式的解法和集合间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设a<b,把函数y=h(x)的图象与直线x=a,x=b及y=0所围成图形的面积与b-a的比值称为函数y=h(x)在[a,b]上的“面积密度”
(I)设f(x)=x1nx-x,曲线y=f(x)与直线y=x+b相切,求b的值;
(II)设0<a<b,求μ的值(用a,b表示)使得函数g(x)=|lnx-lnμ|在区间(a,b)上的“面积密度”取得最小值;
(III)记(2)中的最小值为φ(a,b),求证:φ(a,b)<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数(1+i)(1-i)=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.近年来空气污染是一个生活中重要的话题,PM2.5就是其中一个重要指标.各省、市、县均要进行实时监测,某市2015年11月的PM2.5浓度统计如图所示.
日期PM2.5浓度日期PM2.5浓度日期PM2.5浓度
11-1 13711-1114411-2140
11-214311-1216611-2242
11-314511-1319711-2335
11-419311-1419411-2453
11-513311-1521911-2588
11-62211-164111-2629
11-72211-179011-27199
11-85711-184611-28287
11-911111-198011-29291
11-1013411-206711-30452
(1)请完成频率分布表;
空气质量指数类别PM2.5 24小时浓度均值频数频率
0-354 $\frac{2}{15}$
36-757 $\frac{7}{30}$
轻度污染76-1154 
中度污染116-1506 
重度污染151-250  
严重污染251-500  
合计/301
(2)专家建议,空气质量为优、良、轻度污染时可正常进行户外活动,中度污染及以上时,取消一切户外活动,在2015年11月份,该市某学校进行了连续两天的户外拔河比赛,求拔河比赛能正常进行的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,D是△ABC外接圆劣弧$\widehat{AC}$上的点(不与点A,C重合),延长BD至E,且AD的延长线平分∠CDE.
(1)求证:AB=AC;
(2)若∠BAC=30°,△ABC中BC边上的高为4+2$\sqrt{3}$,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an},其前n项和为Sn
(1)若数列{an}不是递减数列,并满足a1=$\frac{3}{2}$,S3+a3,S5+a5,S4+a4成等差数列.
①求数列{an}的通项公式;
②设Tn=Sn-$\frac{1}{{S}_{n}}$,求数列{Tn}的最大项和最小项的值;
(2)若存在唯一的等比数列{bn}满足an-bn=n(n=1,2,3),求b1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为 $\stackrel{∧}{y}$=0.01x+0.5,则加工600个零件大约需要的时间为 (  )
A.6.5hB.5.5hC.3.5hD.0.5h

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={0,a},B={0,1,3},若A∪B={0,1,2,3},则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,角A、B、C的对边分别为a,b,c,且acosB,ccosC,bcosA成等差数列.
(1)求角C的值;
(2)求2sin2A+cos(A-B)的范围.

查看答案和解析>>

同步练习册答案