精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|,g(x)=-x2+6x-5.
(Ⅰ)用分段函数的形式表示g(x)-f(x),并求g(x)-f(x)的最大值;
(Ⅱ)若g(x)≥f(x),求实数x的取值范围.
考点:分段函数的应用
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:(Ⅰ)分x≥1,x<1可去掉绝对值,得到g(x)-f(x)的表达式,再考虑各段的最值,即可得到函数的最大值;
(Ⅱ)讨论x≥1时,x<1时的g(x)≥f(x)的解集,注意运用二次不等式的解法,最后再求并集.
解答: 解:(Ⅰ)g(x)-f(x)=(-x2+6x-5)-|x-1|=
-x2+5x-4x≥1
-x2+7x-6x<1

则由于x<1时,g(x)-f(x)<0,x≥1时,g(x)-f(x)可取正数.
则有g(x)-f(x)的最大值在[1,4]上取得,
∴g(x)-f(x)=(-x2+6x+5)-(x-1)=-(x-
5
2
2+
9
4
9
4

∴当x=
5
2
时,g(x)-f(x)取到最大值是
9
4
.             
(Ⅱ)当x≥1时,f(x)=x-1;
∵g(x)≥f(x),
∴-x2+6x-5≥x-1;                                        
整理,得(x-1)(x-4)≤0,
解得x∈[1,4];                                         
当x<1时,f(x)=1-x;
∵g(x)≥f(x),
∴-x2+6x-5≥1-x,
整理,得(x-1)(x-6)≤0,
解得x∈[1,6],
x<1
1≤x≤6
,所以不等式组无解                           
综上,x的取值范围是[1,4].
点评:本题考查分段函数及运用,考查分段函数的最值和解不等式,注意各段的自变量的范围,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是等差数列,其中a1=25,a4=16.
(1)求{an}的通项;  
(2)数列{an}从哪一项开始小于0;
(3)求|a1|+|a2|+|a3|+…+|a20|值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的表面展开图,则下列描述正确的是(  )
A、BM与ED平行
B、CN与BM相交
C、CN与BE异面
D、DM与AF平行

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n(n∈N*).
(Ⅰ)设bn=
1
(an+1)(an+3)
,求数列{bn}的前n项和Tn
(Ⅱ)对于给定的数列{cn},如果存在实数p,q使得cn+1=pcn+q对于任意n∈N*恒成立,我们称数列{cn}是“M类数列”.
(ⅰ)判断数列{an}是否为“M类数列”?若是,求出实数p,q的值;若不是,请说明理由;
(ⅱ)数列{dn}是“M类数列”,且满足d1=2,dn+d n+1=3•2n(n∈N*)求数列{dn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{2nan}的前n项和Sn=9-6n
(1)求数列{an}的通项公式;
(2)求数列{Tn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x-3(x>0)的单调增区间是(  )
A、(0,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学甲、乙两班各10名同学测量,他们身高(单位:cm)获得身高数据如下:
甲:158、162、163、168、168、170、171、179、179、182
乙:159、162、165、168、170、173、176、178、179、181
(1)判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取2名身高不低于173cm的同学,求身高为176cm同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=2
3
,b=6,且A=30°,求角B,C及边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
x+a
,满足f(2)=1.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-2,+∞)上是增函数.

查看答案和解析>>

同步练习册答案