精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:a∈R,且a>0,a+ ≥2,命题q:x0∈R,sinx0+cosx0= ,则下列判断正确的是(
A.p是假命题
B.q是真命题
C.(¬q)是真命题
D.(¬p)∧q是真命题

【答案】C
【解析】解:命题p:a∈R,且a>0,由基本不等式的性质可得:a+ ≥2,当且仅当a=1时取等号,是真命题. 命题q:∵sinx+cosx= sin ,因此不存在x0∈R,sinx0+cosx0= ,因此q是假命题.
则下列判断正确的是(¬q)是真命题.
故选:C.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,且 为不共线的平面向量.
(1)若 ,求k的值;
(2)若 ,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,对于 上的任意x1 , x2 , 有如下条件:
;②|x1|>x2;③x1>|x2|;④
其中能使g(x1)>g(x2)恒成立的条件序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50


(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)

p(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.789

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2 . (Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,则方程 的解的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:

t

0

3

6

9

12

15

18

21

24

y

5

7.5

5

2.5

5

7.5

5

2.5

5

经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|,则与y=f(x)相等的函数是( )
A.g(x)=x﹣1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数 .
(1)若 的最小值为-1,求实数 的值;
(2)是否存在实数 ,使函数 有四个不同的零点?若存在,求出 的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案