精英家教网 > 高中数学 > 题目详情

【题目】高二学生小严利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):

女性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

5

10

15

男性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

2

3

10

2

(1)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性

男性

总计

网购达人

非网购达人

总计

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

,其中

【答案】(1);(2)见解析.

【解析】分析:(1)由题意结合分层抽样的概念可得利用列举法可得从5名任意选2名,总的基本事件有10.事件选出的两名购物者恰好是一男一女包含的基本事件有6..

(2)由题意绘制列联表,计算观测值可得,则在犯错误的概率不超过0.010的前提下可以认为是否为网购达人与性别有关”.

详解:(1)按分层抽样女性应抽取80名,男性应抽取20.

抽取的100名且消费金额在[800,1000](单位:元)的网购者中有三位女性设为;两位男性设为.

5名任意选2名,总的基本事件有 ,共10.

选出的两名购物者恰好是一男一女为事件”.

则事件包含的基本事件有6.

.

(2)列联表如下表:

女性

男性

总计

网购达人

50

5

55

非网购达人

30

15

45

总计

80

20

100

.

所以在犯错误的概率不超过0.010的前提下可以认为是否为网购达人与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,且cosC+=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x﹣(a+1)lnx﹣ , 求函数h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn . 已知a1=10,a2为整数,且Sn≤S4
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是奇函数.

1求常数的值;

2,试判断函数的单调性,并加以证明;

3,且函数在区间上的最小值为,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M为BC上的一点,且BM= ,MP⊥AP.

(1)求PO的长;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 =2 ,△DF1F2的面积为

(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通项公式an;

(2)求数列{|an-n-2|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且定义域为.

(1)求关于的方程上的解;

(2)若在区间上单调减函数,求实数的取值范围;

(3)若关于的方程上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案