精英家教网 > 高中数学 > 题目详情

【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.

【答案】
(1)解:∵曲线C:ρ2﹣2ρcosθ﹣8=0,

∴x+y﹣2x﹣8=0,

∴(x﹣1)2+y2=9,

表示圆心(1,0)半径为3的圆


(2)解:曲线E: 消去参数得y﹣1=k(x﹣2)m是一条恒过定点(2,1)的直线(但不包括x=2),当直线E与圆心连线垂直时弦长最小,

设圆心到直线E的距离为d,则d= ,所以弦长的最小值=2 =2


【解析】(1)利用极坐标与直角坐标的转化方法,求曲线C的普通方程,即可指出它是什么曲线.(2)当直线E与圆心连线垂直时弦长最小,利用勾股定理可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数集A由实数构成:且满足:若,则

(1)若,试证明A中还有另外两个元素;

(2)集合A是否为双元素集合,并说明理由;

(3)若集合A是有限集,求集合A中所有元素的积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,并且b=2
(1)若角A,B,C成等差数列,求△ABC外接圆的半径;
(2)若三边a,b,c成等差数列,求△ABC内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,证明f(x)>0
(2)若f(x)≥0,求k的取值范围;并证明此时f(x)的极值存在且与a无关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若数列{bn}满足 =logabn(n∈N*),求数列{(an+6)bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)已知函数

)若函数在其定义域上是增函数,求实数的取值范围;

)当时,求出的极值;

)在()的条件下,若内恒成立,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台ABCD﹣A1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,M为CD上的点.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求证:AM⊥A1B;
(2)若M为CD的中点,N为棱DD1上的点,且MN与平面A1BD所成角的正弦值为 ,试求DN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案