精英家教网 > 高中数学 > 题目详情

【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

【答案】解:选择(2),计算如下:
sin215°+cos215°﹣sin15°cos15°=1﹣ sin30°= ,故 这个常数为
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=
证明:(方法一)sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=sin2α+ ﹣sinα(cos30°cosα+sin30°sinα)
=sin2α+ cos2α+ sin2α+ sinαcosα﹣ sinαcosα﹣ sin2α= sin2α+ cos2α=
(方法二)sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= + ﹣sinα(cos30°cosα+sin30°sinα)
=1﹣ + (cos60°cos2α+sin60°sin2α)﹣ sin2α﹣ sin2α
=1﹣ + cos2α+ sin2α﹣ sin2α﹣ =1﹣ + =
【解析】(Ⅰ)选择(2),由sin215°+cos215°﹣sin15°cos15°=1﹣ sin30°= ,可得这个常数的值.
(Ⅱ)推广,得到三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= .证明方法一:直接利用两角差的余弦公式代入等式的左边,化简可得结果.
证明方法二:利用半角公式及两角差的余弦公式把要求的式子化为 + ﹣sinα(cos30°cosα+sin30°sinα),即 1﹣ + cos2α+ sin2α
sin2α﹣ ,化简可得结果

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】坐标系与参数方程在直角坐标系xOy中,圆C的参数方程 (φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)射线OM:θ= 与圆C的交点为O、P两点,求P点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为 为椭圆 上位于第一象限内的一点.

(1)若点 的坐标为 ,求椭圆 的标准方程;

(2)设 为椭圆 的左顶点, 为椭圆 上一点,且 ,求直线 的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左、右焦点,离心率为 分别是椭圆的上、下顶点, .

(1)求椭圆的方程;

(2)若直线与椭圆交于相异两点,且满足直线的斜率之积为,证明:直线恒过定点,并采定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面是线段的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=1,BC=,点M在棱CC1上,且MD1MA,则当△MAD1的面积最小时,棱CC1的长为(  )

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF= , 则下列结论中错误的个数是( )

(1) AC⊥BE.
(2) 若P为AA1上的一点,则P到平面BEF的距离为.
(3) 三棱锥A-BEF的体积为定值.
(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.
(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是

A. 命题“的否定是:“

B. 命题“若,则”的否命题为“若,则

C. 若命题为真为假为假命题

D. “任意实数大于不是命题

查看答案和解析>>

同步练习册答案