精英家教网 > 高中数学 > 题目详情

已知动圆过定点P(1,0),且与定直线相切,点C上.

(1)求动圆圆心的轨迹M的方程;

(2)设过点P,且斜率为-的直线与曲线M相交于AB两点,

①求线段AB的长;

②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;

(1)y2=4x(2);不存在


解析:

(1)设Mxy),依题意有|MP|=|MN|,

所以|x+1|=.化简得:.

(2)由题意得,直线AB的方程为y=-x-1).

y得3x2-10x+3=0,

解得x1=x2=3. 所以A点坐标为(),B点坐标为(3,-2),

|AB|=|x1-x2|=.假设存在点C(-1,y),使△ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即

 

由①-②得42+(y+22=(2+(y2

解得y=-.但y=-不符合①,

所以由①,②组成的方程组无解.

因此,直线l上不存在点C,使得△ABC是正三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-
3
的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P且斜率为-
3
的直线与曲线M相交于A、B两点,求线段AB的长;
(3)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝山区一模)已知动圆过定点P(1,0),且与定直线l:x=-1相切.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-
3
的直线与曲线M相交于A、B两点.问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学压轴试卷集锦(1)(解析版) 题型:解答题

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案