精英家教网 > 高中数学 > 题目详情

【题目】 届夏季奥林匹克运动会将于2016年8月5日 21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

 

第31届里约

第30届伦敦

第29届北京

第28届雅典

第27届悉尼

中国

26

38

51

32

28

俄罗斯

19

24

24

27

32

(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);

(2)下表是近五届奥运会中国代表团获得的金牌数之和 (从第 届算起,不包括之前已获得的金牌数)随时间 (时间代号)变化的数据:

27

28

29

30

31

时间代号(x)

1

2

3

4

5

金牌数之和(y枚)

28

60

111

149

175

作出散点图如下:

①由图中可以看出,金牌数之和 与时间代号 之间存在线性相关关系,请求出 关于 的线性回归方程;

②利用①中的回归方程,预测2020年第32届奥林匹克运动会中国代表团获得的金牌数.

参考数据:

附:对于一组数据 ,其回归直线的斜率的最小二乘估计为

【答案】(1)详见解析;(2)①.

【解析】

(1)根据题意,画出茎叶图,通过茎叶图得出概率结论;

(2)①计算线性回归方程的系数,写出线性回归方程,

利用回归方程计算x=6的值再减去175即可.

解:(1)两国代表团获得的金牌数的茎叶图如下,

通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散;

(2)①计算===38.3,

所以==104.6﹣38.3×3=﹣10.3;

所以金牌数之和y关于时间x的线性回归方程为=38.3x﹣10.3

知,当x=6时,中国代表团获得的金牌数之和的预报值=38.3×6﹣10.3=219.5,故预测2020年第32届奥林匹克运动会中国代表团获得的金牌数219.5﹣175=44.545枚.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x,若对任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的实根分别为x1、x2和x3、x4 , 若x1<x3<x2<x4 , 则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:

课程

数学1

数学2

数学3

数学4

数学5

合计

选课人数

180

540

540

360

180

1800

为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线被圆所截得的弦的中点为P53).(1)求直线的方程;(2)若直线与圆相交于两个不同的点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线 的准线 轴交于椭圆 的右焦点 的左焦点.椭圆的离心率为 ,抛物线 与椭圆 交于 轴上方一点 ,连接 并延长交 于点 上一动点,且在 之间移动.

(1)当 时,求 的方程;

(2)若 的边长恰好是三个连续的自然数。求到直线距离的最大值以及此时 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).
①若 =t ,当t∈[1,2]时,求k的取值范围;
②过A,B两点分别作曲线E的切线l1 , l2 , 两切线交于点N,求△ACN与△BDN面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x﹣5)2+y2=9的两条切线,切点为M,N,|MN|=3
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

同步练习册答案