精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xoy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右焦点F(1,0),点P在椭圆C上,且在第一象限内,直线PQ与圆O:x2+y2=b2相切于点M.
(1)求椭圆C的方程;
(2)若|PM|×|PF|=$\frac{3}{4}$,求点P的横坐标的值;
(3)若OP⊥OQ,求点Q的纵坐标t的值.

分析 (1)由题意的离心率公式和a,b,c的关系,可得a=2,b=$\sqrt{3}$,进而得到椭圆方程;
(2)设P(x0,y0),代入椭圆方程,由勾股定理可得|PM|,由焦半径公式可得|PF|,再由已知条件,计算即可得到所求值;
(3)讨论当PM⊥x轴或y轴时,求得P的坐标,设Q($\sqrt{3}$,t)或(-$\sqrt{3}$,t),由向量垂直的条件,计算可得t;当直线PM的斜率存在且不为0,设直线方程为y-y0=k(x-x0),由直线和圆相切的条件,化简整理,设出Q的坐标,由向量垂直的条件:数量积为0,化简整理计算即可所求值.

解答 解:(1)由题意可得e=$\frac{c}{a}$=$\frac{1}{2}$,c=1,
即有a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
则椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)设P(x0,y0),则$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$=1(0<x0<2),
|PM|=$\sqrt{|OP{|}^{2}-3}$=$\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}-3}$=$\sqrt{{{x}_{0}}^{2}+3-\frac{3}{4}{{x}_{0}}^{2}-3}$=$\frac{1}{2}$x0
|PF|=a-ex0=2-$\frac{1}{2}$x0
由|PM|•|PF|=$\frac{3}{4}$,可得$\frac{1}{2}$x0•(2-$\frac{1}{2}$x0)=$\frac{3}{4}$,
解得x0=1(3舍去),即点P的横坐标的值为1;
(3)当PM⊥x轴或y轴时,P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),设Q($\sqrt{3}$,t)或(-$\sqrt{3}$,t),
由OP⊥OQ,可得$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,即为3+$\frac{\sqrt{3}}{2}$t=0或-3+$\frac{\sqrt{3}}{2}$t=0,
解得t=±2$\sqrt{3}$;
当直线PM的斜率存在且不为0,设直线方程为y-y0=k(x-x0),
即为kx-y+y0-kx0=0,由直线PQ与圆O相切,可得
$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}$,即为(kx0-y02=3+3k2,即2kx0y0=k2x02+y02-3-3k2
令Q($\frac{t-{y}_{0}+k{x}_{0}}{k}$,t),由$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,可得t=$\frac{{x}_{0}({y}_{0}-k{x}_{0})}{{y}_{0}+k{x}_{0}}$,
则t2=$\frac{{{x}_{0}}^{2}({y}_{0}-k{x}_{0})^{2}}{({y}_{0}+k{x}_{0})^{2}}$=$\frac{{{x}_{0}}^{2}(3+3{k}^{2})}{{{x}_{0}}^{2}+{k}^{2}{{y}_{0}}^{2}+{k}^{2}{{x}_{0}}^{2}+{{y}_{0}}^{2}-3-3{k}^{2}}$
=$\frac{{{x}_{0}}^{2}(3+3{k}^{2})}{(1+{k}^{2}){{x}_{0}}^{2}+(1+{k}^{2})(3-\frac{3}{4}{{x}_{0}}^{2})-3(1+{k}^{2})}$=12,
解得t=±2$\sqrt{3}$.
综上可得,点Q的纵坐标t的值为±2$\sqrt{3}$.

点评 本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和圆相切的条件:d=r,考查椭圆方程的应用,向量垂直的条件:数量积为0,运算化简的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知f(x)=ln[x2+(m-1)x+1],若f(x)的值域为R,则m的取值范围(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-x2
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)问是否存在这样的正数a,b使得当x∈[a,b]时,函数g(x)=f(x)的值域为[$\frac{1}{b}$,$\frac{1}{a}$],若存在,求出所有a,b的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=x2+mx+m+1,则f(-3)=(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,a1=1,公比q=2,则a4的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=4x2-mx+1在(-∞,-2]上递减,在[-2,+∞)上递增,则f(1)=(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.电视台有一个闯关游戏节目.参加游戏的每支队伍由父、母与小孩三人组成,规则如下:每队三次机会,每次只派一人上场,在规定时间内答对10题则过关,否则淘汰,再派另一个人上场,若三人有一人通过则全队通过.某家庭各自过关的概率分别为P1(父亲)、P2(母亲)、P3(小孩),P1、P2、P3互不相等且各自能否过关互不影响.
(1)该家庭闯关能否成功是否与上场顺序有关?并说明理由;
(2)若按父、母、小孩的顺序上场,求出场人数x的分布列及均值;
(3)若P3<P2<P1<1,分析以怎样的顺序上场可使所需出场人数的期望最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是奇函数.
(1)求a,b的值;
(2)解方程f(x)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向在C处追赶上渔船乙,刚好用2小时.则BC=28.

查看答案和解析>>

同步练习册答案