精英家教网 > 高中数学 > 题目详情

【题目】如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.

1)根据图象,求函数的解析式;

2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.

【答案】1;(24

【解析】

1)由,得,由,得Ab,代入,求得,从而即可得到本题答案;

2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.

1)解:由图知

,可得

,代入,得

所求为

2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:

同理,企业甲用电负荷量变化关系式为:

两企业用电负荷量之和

依题意,有恒成立

恒成立

展开有恒成立

其中,

整理得:

解得

得:

的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 如图是正方体的平面展开图在这个正方体中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四个命题中正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四棱锥P-ABCD的底面为直角梯形,AB//DCPA底面ABCD,且PA=AD=DC=AB=1MPB的中点.

1)证明:面PADPCD

2)求ACPB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数在(0+∞)上为单调递增函数,且,则不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个由数字1,2,3,4,5,6,7,8,9组成的位正整数,并同时满足如下两个条件

(1)数字1,2,…,中各出现两次

(2)每两个相同的数字之间恰有个数字

此时,我们称这样的正整数好数”.例如,当时,可以是312 132.试确定满足条件的正整数的值,并各写出一个相应的好数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知.

(1)求角C的值;

(2)若c=2,且△ABC的面积为,求a,b.

查看答案和解析>>

同步练习册答案