精英家教网 > 高中数学 > 题目详情
16.自点 A(-3,4)作圆(x-2)2+(y-3)2=1的切线,则A到切点的距离为(  )
A.$\sqrt{5}$B.3C.$\sqrt{10}$D.5

分析 求出圆心和半径,求出AC的值,可得切线的长.

解答 解:圆(x-2)2+(y-3)2=1,表示以C(2,3)为圆心,以r=1为半径的圆.
由于AC=$\sqrt{26}$,故切线的长为$\sqrt{26-1}$=5,
故选D.

点评 本题主要考查直线和圆的位置关系,求圆的切线长度的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用分析法证明:欲证①A>B,只需证②C<D,这里②是①的(  )
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.cos$(\frac{-13π}{4})$的值为(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}满足:${a_1}=\frac{1}{2},2{a_3}={a_2}$
(1)求数列{an}的通项公式;
(2)若等差数列{bn}的前n项和为Sn,满足b1=1,S3=b2+4,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=1+2sin(2x-\frac{π}{3})$.
(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在$x∈[\frac{π}{4},\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin2x,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移$\frac{\sqrt{3}}{2}$个单位移,得到函数g(x)的图象,则当x∈[0,$\frac{π}{2}$]时,函数g(x)的值域为(  )
A.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]B.[-$\frac{\sqrt{3}}{2}$,1]C.[0,1+$\frac{\sqrt{3}}{2}$]D.[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a>$\frac{1}{4}$”是“关于x的不等式ax2-x+1>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a,b为实数,则“a5<b5”是“2a<2b”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2+x-2<0},$B=\left\{{x|{{log}_{\frac{1}{2}}}x>1}\right\}$,则A∩B=(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-2,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

同步练习册答案