精英家教网 > 高中数学 > 题目详情

【题目】随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?

(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;

【答案】(1)220元(2)

【解析】

(1)可得按调整前起征点应纳个税为1500×3%+2500×10%=295元,按调整后起征点应纳个税为2500×3%=75元,两者相减可得答案;

(2) 由频数分布表可知从[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,其中[3000,5000)中占3人,分别记为ABC,[5000,7000)中占4人,分别记为1,2,3,4,再从这7人中选2人的所有组合有21种情况,其中不在同一收入人群的有12种情况,由概率计算公式计算可得答案.

解:(1)由于小李的工资、薪金等收入为7500元,

按调整前起征点应纳个税为1500×3%+2500×10%=295元;

按调整后起征点应纳个税为2500×3%=75元,

比较两个纳税方案可知,按调整后起征点应纳个税少交220元,

即个人的实际收入增加了220元,所以小李的实际收入增加了220元。

(2)由频数分布表可知从[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,其中[3000,5000)中占3人,分别记为ABC,[5000,7000)中占4人,分别记为1,2,3,4,再从这7人中选2人的所有组合有:ABACA1A2A3A4BCB1B2B3B4C1C2C3C4,12,13,14,23,24,34,共21种情况,

其中不在同一收入人群的有:AlA2A3A4B1B2B3B4C1C2C3C4,共12种,所以所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某课题小组共10人,已知该小组外出参加交流活动次数为123的人数分别为33 4,现从这10人中随机选出2人作为该组代表参加座谈会.

1)记“选出2人外出参加交流活动次数之和为4”为事件A,求事件A发生的概率;

2)设X为选出2人参加交流活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:

产量(单位:斤)

播种方式

[840860

[860880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

约定亩产超过900斤(含900斤)为产量高,否则为产量低

1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)

2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为产量高播种方式有关?

产量高

产量低

合计

直播

散播

合计

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公交公司为了方便市民出行、科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为研究车辆发车间隔时间(分钟)与乘客等候人数(人)之间的关系,经过调查得到如下数据:

间隔时间(分钟)

等候人数(人)

调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过,则称所求线性回归方程是“恰当回归方程”.

(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间之差大于的概率;

(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;

(3)在(2)的条件下,为了使等候的乘客不超过人,则间隔时间最多可以设置为多少分钟?(精确到整数)

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).

1)求曲线的直角坐标系方程和直线的普通方程;

2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,某地援鄂医护人员人(其中是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这名医护人员和接见他们的一位领导共人站一排进行拍照,则领导和队长站在两端且相邻,而不相邻的排法种数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α4cosα=0.已知直线l的参数方程为为参数),点M的直角坐标为.

1)求直线l和曲线C的普通方程;

2)设直线l与曲线C交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处取得极值,求实数的值.

(2)求函数的单调区间.

(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的四边形的面积为,其离心率为

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线轴除外)与椭圆交于不同的两点,在轴上是否存在定点,使为定值?若存在,求出定点坐标及定值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案