精英家教网 > 高中数学 > 题目详情

有关双曲线的方程的求解问题,如何具体判断所求的双曲线方程是否为标准方程形式?如果所求的双曲线方程是标准方程形式,又如何判断是标准方程的哪种形式呢?

答案:
解析:

  探究:有关双曲线的方程的求解问题,并非所有的题目都是有关标准方程的求解.在具体求解过程中,要注意判定所求的双曲线方程是否应该是标准方程形式,例如,如果其两个焦点不关于原点对称,那么所求的双曲线方程就不会是标准方程形式;如果其顶点不关于原点对称,同样所求的方程形式也不是标准方程的形式.当然在具体问题中还要作具体分析.

  如果所求的双曲线方程是标准方程形式,要判断其方程是哪种形式可以通过判定其焦点或顶点所在的数轴来确定.如果根据已知条件不能判定其方程的形式,此时就要考虑分类讨论,或所求双曲线方程设为mx2+ny2=1的形式,从而达到目的.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1
,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省韶关市北江中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市海安县课本回归检测数学试卷1(解析版) 题型:解答题

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

科目:高中数学 来源:2011年广东省韶关市高考数学一模试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

同步练习册答案