精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间和最小值;
(Ⅱ)当b>0时,求证:bb≥(
1
e
)
1
e
(其中e=2.718 28…是自然对数的底数).
分析:(Ⅰ)先对函数求导,令导函数大于0得到递增区间,令导函数小于0得到递减区间,进一步求出最小值;
(Ⅱ)由(Ⅰ)可知当b>0时,有f(b)≥f(x)min=-
1
e
,整理可得要证的结论.
解答:解:(Ⅰ)∵f'(x)=lnx+1,(x>0),令f'(x)≥0,即lnx≥-1=lne-1.…(2分)
∵e=2.718,28…>1,∴y=lnx在(0,+∞)上是单调递增函数.
x≥e-1=
1
e
.,∴x∈[
1
e
,+∞)

同理,令f′(x)≤0可得x(0,
1
e
]

∴f(x)单调递增区间为[
1
e
,+∞)
,单调递减区间为(0,
1
e
]
.…(6分)
由此可知y=f(x)min=f(
1
e
)=-
1
e
.…(8分)
(Ⅱ)由(I)可知当b>0时,有f(b)≥f(x)min=-
1
e

blnb≥-
1
e
…(10分)
ln(bb)≥-
1
e
=ln(
1
e
)
1
c
.∴bb≥(
1
e
)
1
c
.…(12分)
点评:本题考查了导数的应用:利用导数判断函数的单调性及求单调区间;函数在区间上的最值的求解,其一般步骤是:先求极值,比较函数在区间内所有极值与端点函数.若函数在区间上有唯一的极大(小)值,则该极值就是相应的最大(小)值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案