精英家教网 > 高中数学 > 题目详情
15.设a=1.60.3,b=log2$\frac{1}{9},c={0.8^{1.6}}$,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.b<c<aD.c<a<b

分析 判断三个数与0,1的大小关系,推出结果即可.

解答 解:a=1.60.3>1,b=log2$\frac{1}{9}$<0,c=0.81.6∈(0,1).
可得b<c<a.
故选:C.

点评 本题考查对数值的大小比较,注意中间量0,1的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知A,B为圆C:(x-m)2+(y-n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足$|\overrightarrow{CA}+\overrightarrow{CB}|=\sqrt{13}$,则|AB|=(  )
A.$\sqrt{23}$B.$\frac{{\sqrt{23}}}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={x||2x-1|≤3},N={x∈Z|1<2x<8},则M∩N=(  )
A.(0,2]B.(0,2)C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,平面PCD⊥平面ABCD,△PCD是等边三角形,四边形ABCD是梯形,BC∥AD,BC⊥CD,AD=2BC=2$\sqrt{2}$.
(1)若AB⊥PB,求四棱锥P-ABCD的体积;
(2)在(1)的条件下,求二面角P-AB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义域R上的增函数,?x,y∈R,f(x+y)=f(x)+f(y)-1,且f(3)=3,记an=f(n)(n∈N*),则数列{an}的前n项和Sn=$\frac{n(n+4)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)是定义在[-3,3]上的偶函数,当0≤x≤3时,f(x)单调递减,若f(1-2m)<f(m)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.全称命题:?x∈R,x2≤0的否定是(  )
A.?x∈R,x2≤0B.?x0∈R,x${\;}_{0}^{2}$>0C.?x0∈R,x${\;}_{0}^{2}$<0D.?x0∈R,x${\;}_{0}^{2}$≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且满足an=2Sn-1(n∈N*)
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)若bn=(2n+1)an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=log2(x+1),g(x)=log${\;}_{\frac{1}{2}}$(1-x),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的定义域,并判断F(x)的奇偶性,请说明理由;
(Ⅱ)判断H(x)=$\frac{1+x}{1-x}$在(1,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

同步练习册答案