精英家教网 > 高中数学 > 题目详情

平行四边形中,,且,以BD为折线,把△ABD折起,,连接AC.

(1)求证:;
(2)求二面角B-AC-D的大小.

(1)证明见解析;(2)

解析试题分析:(1)要证线线垂直,一般先其中一条直线与过另一条直线的某个平面垂直,首先我们在图形中寻找垂直关系,折叠后的图形中,只有一个面面垂直,没有线线的关系,回到原平面图形中,已知条件是,且,应用余弦定理可求得,因此是等腰直角三角形,,因此,同样是垂直的两平面的交线,由面面垂直的性质可得平面,证线线垂直所需要的线面垂直出来了,结论得证;(2)求二面角,可以根据二面角的定义作二面角的平面角,首先寻找两个面中其中一个平面的垂线,由题意,取中点,则,从而可证平面,那么只要作,垂足为,则就是所要的平面角,当然本题也可用空间向量法求.
试题解析:(1)在中,,
易得.面面

4分

(2)法一:在四面体ABCD中,以D为原点,DB为x轴,DC为y轴,过D垂直于平面BDC的直线为z轴,建立如图空间直角坐标系.则D(0,0,0),B(1,0,0),C(0,1,0),A(1,0,1).       6分
设平面ABC的法向量为,而
由得:
取                             8分
再设平面DAC的法向量为,而
由得:,取         10分
所以,所以二面角B-AC-D的大小是60°.    12分
法二:取BC的中点E,连DE,过DDFACF,连EF,则是二面角B-AC-D的平面角      8分
,
           12分
法三:补成正方体.
考点:(1)证线线垂直;(2)求二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是边长为2的正方形,平面,且.
(1)求证:平面;
(2)求证:平面平面;
(3)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,G是上的动点。
(l)求证:平面ADG
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中, ,的中点,△是等腰三角形,的中点,上一点.

(1)若∥平面,求
(2)求直线和平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.

(1)求证:平面
(2)若以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体
(1)在正方体的所有棱中,哪些棱所在直线与直线异面
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.

(1)求证:BF∥平面A′DE;
(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.

查看答案和解析>>

同步练习册答案