精英家教网 > 高中数学 > 题目详情
若函数y=an-2+1(a>0且a≠1)的图象经过点P(m,n),且过点Q(m-1,n)的直线 l被圆C:x2+y2+2x-2y-7=0截得的弦长为3
2
,则直线l的斜率为(  )
A、-1或者-7
B、-7或
4
3
C、0或
4
3
D、0或-1
考点:直线与圆相交的性质,指数函数的图像与性质
专题:计算题,直线与圆
分析:由题意,P(2,2),Q(1,2),设l:y-2=k(x-1),即kx-y+2-k=0,将圆的方程化为标准方程,找出圆心坐标和圆的半径r,由弦长及半径,利用垂径定理及勾股定理求出圆心到直线l的距离d,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,即为直线l的斜率.
解答: 解:由题意,P(2,2),Q(1,2),设l:y-2=k(x-1),即kx-y+2-k=0,
圆C:x2+y2+2x-2y-7=0可化为(x+1)2+(y-1)2=9,
圆心C(-1,1)到l的距离d=
|-k-1+2-k|
k2+1
=
32-(
3
2
2
)
2

∴k2+8k+7=0,k=-1或-7,
故选A.
点评:此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,点到直线的距离公式,以及直线的点斜式方程,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造至直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某算法的程序框图如图所示,若输出结果为3,则可输入的实数x的个数共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1与q;
(3)a5=4,a7=6,求a9

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是(  )
A、相离B、相切
C、相交且不过圆心D、相交且过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内一动点P(x,y)与两定点F1(-
2
,0),F2
2
,0)的距离之和等于2
3

(Ⅰ)求动点P的轨迹方程C;
(Ⅱ)已知定点E(-1,0),若直线y=kx+2(k≠0)与曲线C相交于A、B两点,试判断是否存在k值,使以AB为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x2-x)f(x)>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合 A={x∈R|x<1},B={x∈R|x>0},则 A∪B=(  )
A、RB、∅
C、(0,1)D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA与tanB是方程x2-6x+7=0的两个根,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
2x2+m
在(
1
2
,f(
1
2
))处的切线方程为8x-9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若关于x的不等式f(x)≤ax+
8
9
在[
1
2
,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案