精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:

1)若,求数列的通项公式;

2)若,且

,求证:数列为等差数列;

若数列中任意一项的值均未在该数列中重复出现无数次,求首项应满足的条件.

【答案】1

2根据等差数列的定义,证明相邻两项的差为定值来得到证明.从第二项起满足题意即可.

,数列任意一项的值均未在该数列中重复出现无数次

【解析】

试题解:(1)当时,有

也满足上式,所以数列的通项公式是4

2因为对任意的,有,所以,

所以,数列为等差数列. 8

(其中为常数且

所以,

即数列均为以7为公差的等差数列. 10

(其中中一个常数)

时,对任意的,有12

时,

)若,则对任意的,所以数列为递减数列;

)若,则对任意的,所以数列为递增数列.

综上所述,集合

时,数列中必有某数重复出现无数次;

时,数列均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列任意一项的值均未在该数列中重复出现无数次. 18

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为:,(t为参数).在以坐标原点0为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ24ρcosθ4ρsinθ+40

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)设直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在区间内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCDPD∥QAQA=AB=PD.

I)证明:平面PQC⊥平面DCQ

II)求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电器专卖店销售某种型号的空调,记第天()的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数

1)当时,求函数的解析式;

2)求的值及该店前天此型号空调的销售总量;

3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项大于0的等差数列的公差,且

1)求数列的通项公式;

2)若数列满足:,其中

①求数列的通项

②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)射线与曲线分别交于点(且点均异于原点),当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点),都在函数)的图像上;

1)若数列是等差数列,求证:数列是等比数列;

2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;

3)设),过点的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;

查看答案和解析>>

同步练习册答案