【题目】已知数列,满足:.
(1)若,求数列的通项公式;
(2)若,且.
① 记,求证:数列为等差数列;
② 若数列中任意一项的值均未在该数列中重复出现无数次,求首项应满足的条件.
【答案】(1)
(2)①根据等差数列的定义,证明相邻两项的差为定值来得到证明.从第二项起满足题意即可.
②当,数列任意一项的值均未在该数列中重复出现无数次
【解析】
试题解:(1)当时,有
.
又也满足上式,所以数列的通项公式是. 4分
(2)①因为对任意的,有,所以,
,
所以,数列为等差数列. 8分
②设(其中为常数且,
所以,,
即数列均为以7为公差的等差数列. 10分
设.
(其中为中一个常数)
当时,对任意的,有; 12分
当时,.
(Ⅰ)若,则对任意的有,所以数列为递减数列;
(Ⅱ)若,则对任意的有,所以数列为递增数列.
综上所述,集合.
当时,数列中必有某数重复出现无数次;
当时,数列均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列任意一项的值均未在该数列中重复出现无数次. 18分
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为:,(t为参数).在以坐标原点0为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+4=0.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.
(1)若、且,证明:函数必有局部对称点;
(2)若函数在区间内有局部对称点,求实数的取值范围;
(3)若函数在上有局部对称点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电器专卖店销售某种型号的空调,记第天(,)的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数.
(1)当时,求函数的解析式;
(2)求的值及该店前天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项大于0的等差数列的公差,且;
(1)求数列的通项公式;
(2)若数列满足:,,,其中;
①求数列的通项;
②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线:与曲线,分别交于点,(且点,均异于原点),当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、、、(),都在函数(,)的图像上;
(1)若数列是等差数列,求证:数列是等比数列;
(2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;
(3)设,(),过点、的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com